

dRAID: Declustered RAID for ZFS

Installation and Configuration Guide High Performance Data Division

INTEL FEDERAL, LLC PROPRIETARY September 2017

Generated under Argonne Contract number: B609815

DISTRIBUTION STATEMENT: None Required

Disclosure Notice: This presentation is bound by Non-Disclosure Agreements between Intel Corporation, the Department of Energy, and DOE National Labs, and is therefore for Internal Use Only and not for distribution outside these organizations or publication outside this Subcontract.

USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Export: This document contains information that is subject to export control under the Export Administration Regulations.

Intel Disclaimer: Intel makes available this document and the information contained herein in furtherance of CORAL. None of the information contained therein is, or should be construed, as advice. While Intel makes every effort to present accurate and reliable information, Intel does not guarantee the accuracy, completeness, efficacy, or timeliness of such information. Use of such information is voluntary, and reliance on it should only be undertaken after an independent review by qualified experts.

Access to this document is with the understanding that Intel is not engaged in rendering advice or other professional services. Information in this document may be changed or updated without notice by Intel.

This document contains copyright information, the terms of which must be observed and followed.

Reference herein to any specific commercial product, process or service does not constitute or imply endorsement, recommendation, or favoring by Intel or the US Government.

Intel makes no representations whatsoever about this document or the information contained herein. IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Company Name: Intel Federal, LLC

Company Address: 4100 Monument Corner Drive, Suite 540 Fairfax, VA 22030

Copyright © 2015 - 2016, Intel Corporation.

Technical Lead: (Name, E-mail, Phone) _Al Gara, alan.gara@intel.com, 408-765-0996

Contract Administrator: (Name, E-mail, Phone) Aaron Matzkin, aaron.matzkin@intel.com, 503-712-0833

Program Manager: (Name, E-mail, Phone) Jacob Wood, jacob.r.wood@intel.com, 503-264-2219

Document Revision History

Revision Number	Date	Comments						
0.8	September 2017	Initial version.						

Contents

1	Introduction	7
	1.1 Terms used in this Document 1.2 Additional Documentation	9
	1.3 Software Requirements1.4 Hardware Requirements	
2	Configuring dRAID for ZFS1	1
	2.1 Introduction 1 2.1.1 raidz vs dRAID 1 2.1.2 Recommended Reading 1 2.2 Using dRAID 1 2.2.1 Create a dRAID VDEV 1 2.2.2 Sequential Rebuild 1 2.2.3 dRAID-aware Spare Space Rebalancing 1 2.2.4 Troubleshooting 1 2.3 Administration of dRAID for ZFS 2 2.3.1 Introduction 2 2.3.2 Command Line Interface 2	1 2 2 2 5 8 9 0 0
3	2.4 Tuning dRAID for ZFS 2 ZED Fault Handling 2	
	3.1 Introduction 2 3.2 Spare Device Matching 2 3.3 Multi-path Support 2 3.4 ZED Watchdog Timer 2 3.5 Multi-Fault Support 2	2 3 3
4	Metadata Isolation	4
	4.1Introduction24.2Dedicated VDEVs24.3Segregated VDEVs24.3.1Segregation Percentage24.3.2Ditto Block Policy24.4VDEV Changes24.4.1Feature Flag Encapsulation24.4.2VDEV Allocation Bias24.4.3Metaslab Allocation Bias24.4.4VDEV Allocation Stats24.5Notes on Metadata Isolation3	6 6 6 7 8 8 8 8 8 9
5	Validation3	2
	5.1Building and installing the ZFS Test Suite35.2Running the ZFS Test Suite35.3Test Results35.4ZTest/zloop Verification Tests3	2 3
Арр	endix A. Usage Examples	5
	A.1 Usage Examples of dRAID for ZFS3 A.1.1 Arbitrary Pool Configuration3	

A.1	.2 Dynamic Rebuild Throttling	6
A.1		
A.1	.4 Rebalance	0
A.2	Usage Examples of Metadata Isolation with Lustre* and dRAID	1
A.2	.1 Hybrid Metadata/Smallblock Isolation with dRAID VDEVs	1
A.2	.2 Observing Metaslab Regions	3
A.2	.3 Observing Free Space Fragmentation4	5
A.2	.4 Observing Allocations by Category4	7
A.3	Usage Examples of End-to-End 16MB File Block I/Os4	
A.3	.1 Configuring the file system for 16MB I/Os4	8
A.3	.2 Lustre OSS	9
A.3	.3 Prepping Lustre Counters	0
A.3	.4 BRW Stats5	51
A.4	End to End Streaming5	52
A.4	.1 Lustre Client RPC stats5	64
A.4	.2 Lustre Server BRW stats5	64
A.4		
A.4		
A.4	.5 Linux disk stats for a random workload5	57
A.5	Fragmentation Improvements5	9
A.5	.1 File System Fragmention5	
A.5		
A.6	Examples of ZED Fault Handling using dRAID for ZFS	•2
A.6	.1 Multi-Fault Handling6	•2
Appendix B	. dRAID Configuration Examples7	2
B.1	'zdb –m' for a dRAID pool without segregation7	2
	'zdb –m' for a dRAID pool with segregation enabled	
	draidcfg output for the 80 drive demonstration (80.nvl)8	
	Zpool status for the 80 drive JBOD	
Appendix C	. References	6'

Tables

Table 5-1. zTest dRAID Options	34
Table 5-2. I/O Size Evaluation Tools	53

Figures

Figure 2-1. ZFS Commands Modified for Metadata Isolation	20
Figure 3-1. ZED Architecture	
Figure 3-2. ZED FMA Components	
Figure 4-1. Transition from Unmodified RAIDZ to Hybrid Mirror Configuration	25
Figure 5-1. Dynamic Rebuild Throttling	37
Figure 5-2. Rebalance to a Replacement Drive	40
Figure 5-3. Size Distribution of ZFS Write I/O	55
Figure 5-4. Read/Write Disk Stats for Sequential Workload	56

Figure 5-5. Write/Read Bandwidth for Sequential Workload	57
Figure 5-6. Read/Write Disk Stats for Random Workload	58
Figure 5-7. Write/Read Bandwidth for Random Workload	59
Figure 5-8. Fragmentation Impact on RAIDZ1 Performance	60
Figure 5-9. Fragmentation Comparison of Segregated and Unsegregated dRAIDs	61
Figure 5-10. Performance Impact of Segregation on Fragmented File System	62

1 Introduction

In large-scale storage configurations needed to meet the IO requirements of future HPC systems, disk failures are inevitable and viewed as a normal incident rather than an exceptional event.

When disk failures happen, it is important that RAID parity reconstruction complete as quickly as possible. Shorter rebuild times significantly reduce exposure to multiple concurrent disk failures, which could lead to data loss. It is also important that the RAID rebuilding process minimally affect the application IO. A drop in IO performance would cause applications to run longer or even fail to complete in their allotted time window.

The process of rebuilding a "traditional" RAID array, when replacing a failing/failed drive by a new one, consists of reading all the data, block-by-block, on all the surviving disks in the array, reconstructing the original blocks of the failed drive, and then writing the reconstructed data to the replacement drive. After this process is complete, the array is restored to its original full redundancy.

In ZFS, there is a similar and equivalent process, called resilvering, which is implemented differently from traditional RAID reconstruction, as volume management is a built-in part of ZFS. This process starts by traversing the ZFS block pointer tree to discover all the blocks of the ZFS pool that were affected by the failed drive. Upon reaching one of these blocks, the block is read, or reconstructed if necessary from the redundant/parity information, its checksum is verified, and the missing data or parity from the failed drive is written to free blocks on a new drive.

In both cases, the speed of rebuilding or resilvering is bounded by the write throughput of a single replacement drive. As a result, the total resilver time will grow at least linearly (often much worse) with drive capacity. As drive capacity continues to grow with little increase in drive throughput, rebuild time can increase significantly. For example, it would take about 27 hours to rebuild a 10TB drive at 100MB/s. Since idle time is rare, a drive failure and subsequent rebuild process can significantly affect system performance.

Parity declustered RAID (dRAID) for ZFS distributes data, parity, and spare capacity across all drives in a pool so that they all participate in the rebuild process equally. Since the pool is many times larger than the redundancy group size, aggregate read performance during reconstruction is correspondingly increased. In addition, since reconstructed data is written to spare space distributed across all drives, the bottleneck of having to write a single replacement drive to restore redundancy is eliminated.

Though declustered RAID for ZFS uses the existing RAIDZ code to calculate parity and reconstruct lost blocks, we call the solution dRAID to make clear the distinction between the layout of data, parity, and spare space in this design and the layout of data and parity with existing RAIDZ. The dRAID solution makes possible a mechanism to further speed up recovery after a drive failure by decoupling the recreation of redundancy from the verification of the recreated blocks to ensure that no drive in the storage array is idle during the rebuild.

1.1 Terms used in this Document

The following terms and abbreviations are used in this document.

Term	Definition
ZFS	A combined file system and logical volume manager.
RAIDZ	A generic term to refer to ZFS RAIDZ1, RAIDZ2, RAIDZ3, and mirror, when there is no need to distinguish between them. Otherwise, the more specific terms are used. The generic term RAID is also used when there is no need to distinguish between traditional RAID and RAIDZ.
VDEV	A "virtual device" describes a single device or a collection of devices organized according to certain performance and fault characteristics. ZFS currently supports the following VDEV types: disk, file, mirror, RAIDZ, spare, log, and cache.
ZFS Pool	Unlike traditional file systems which reside on single devices and thus require a volume manager to use more than one device, ZFS file systems are built on top of virtual storage pools called ZFS pools. A ZFS Pool is a constructed of a set of VDEVs.
dRAID	A modification of RAIDZ, as defined in this document, to implement declustered RAID for ZFS using fixed stripe-width redundancy groups to improve RAIDZ resilver speed. This is a generic term that can refer to ZFS dRAID1 (single parity), ZFS dRAID2 (double parity), ZFS dRAID3 (triple parity), and ZFS dRAIDM (mirror).
	Though dRAID will use the existing RAIDZ code to calculate parity and reconstruct lost blocks, we call the solution dRAID to make clear the distinction between the layout of data, parity, and spare space in this design and the layout of data and parity with existing RAIDZ.
Drive Slice	All drives in a dRAID VDEV are divided into equal sized units called slices. A slice is the basic unit of parity declustering. Slice size must be a multiple of hardware sector size of the drive.
Metaslab	An allocation region in a VDEV. ZFS divides a top-level VDEV into equal-sized regions called metaslabs. A ZFS block cannot cross metaslab boundary.
Permutation	Permutation and developed permutation is derived from the base permutation.
Redundancy Group	The redundancy group is composed of data and parity units that RAIDZ generates from the file block it receives from ZFS. Reconstruction of the group is possible if one or more (depending on the RAIDZ type) of its units are unreadable.
Resilver	The process of reconstructing data/parity on a failed drive in a RAIDZ group to a replacement drive, or failed drive in a dRAID group to spare space.
Scrub	The process of examining all ZFS blocks in a pool to verify block checksums. For replicated VDEVs (mirror, RAIDZ, or dRAID), ZFS automatically repairs any damage discovered.
Spacemap	Persistent on-disk data structure that keeps track of allocated space in a metaslab. There is one spacemap for each metaslab.

Term	Definition
Spare Rebalance	The process of copying reconstructed data/parity from previous spare blocks to a replacement drive so that distributed spare blocks become available again.
Spare Space	This is spare capacity distributed over all drives in a dRAID VDEV, reserved for recovery. For the sake of simplicity hereafter in this document, N spare drives is used as a shorthand for distributed spare space with sufficient capacity to rebuild data on N failed drives.
Uberblock	A VDEV label contains an array of uberblocks. The uberblock is the portion of the label containing information necessary to access the contents of the pool. Only one uberblock in the pool is active at any point in time. The uberblock with the highest transaction group number and valid SHA-256 checksum is the active uberblock.
Unit	A unit is a portion of a redundancy group written to a drive slice. A redundancy group is composed of data and parity units.
VDEV Label	Each physical VDEV within a ZFS pool contains four copies of a 256KB structure called a VDEV label, two at the beginning of the VDEV and two at the end. The VDEV label contains information describing this particular physical VDEV and all other VDEVs which share a common top-level VDEV as an ancestor.
DVA	The Data Virtual Address is the ZFS notion of block address. It consists of two parts: VDEV, and offset. It determines the physical location of a ZFS block on a top-level VDEV.
ZED	ZFS Event Daemon monitors events generated by the ZFS kernel module. When a zevent (ZFS Event) is posted, ZED will run any ZEDLETs (ZFS Event Daemon Linkage for Executable Tasks) that have been enabled for the corresponding zevent class.

1.2 Additional Documentation

Refer to the following documentation for architecture and description:

Document	Location
Scope Statement	
Solution Architecture	

1.3 Software Requirements

- ZFS on Linux version 0.8.0.
- Lustre* version 2.10

NOTE: While Lustre is not required for dRAID to be used in a ZFS environment, it is required for some of the features described in this document.

1.4 Hardware Requirements

The hardware used must be compliant with the minimum RAIDZ requirements (Minimum Drives= (5+1) single parity).

2 Configuring dRAID for ZFS

2.1 Introduction

This chapter describes the setup and configuration of dRAID for ZFS.

2.1.1 raidz vs dRAID

ZFS users are most likely very familiar with raidz already, so a comparison with dRAID may help. The illustrations below are simplified, but sufficient for the purpose of a comparison. For example, 31 drives can be configured as a zpool of six raidz1 VDEVs and a hot spare:

	ra	aidz1·	-0	raidz1-1raidz1-2							raidz1-3						r	aidz1	-4			ra	idz1		hot spare			
0	1	2	3	4							15	16	17	18	19		20	21	22	23	24	25	26	27	28	29	30	
0	1	2	3	4							15	16	17	18	19		20	21	22	23	24	25	26	27	28	29	30	
0	1	2	3	4							15	16	17	18	19		20	21	22	23	24	25	26	27	28	29	30	
0	1	2	3	4							15	16	17	18	19		20	21	22	23	24	25	26	27	28	29	30	

As shown above, if drive 0 fails and is replaced by the hot spare, only five out of the 30 surviving drives will work to resilver: drives 1-4 read, and drive 30 writes.

The same 30 drives can be configured as 1 dRAID1 VDEV of the same level of redundancy (i.e. single parity, 1/4 parity ratio) and single spare capacity:

								dı	raid1	-0											d	istrib	outed	spa
4	8	2	16	1			29	27	30	23	15	28	25	14	19	7	11	22	21	13	26		0	
5	9	3	17	2			30	28	0	24	16	29	26	15	20	8	12	23	22	14	27		1	1
6	10	4	18	3			0	29	1	25	17	30	27	16	21	9	13	24	23	15	28		2	1
7	11	5	19	4			1	30	2	26	18	0	28	17	22	10	14	25	24	16	29		3	ļ
				•																			•	ļ

The drives are shuffled in a way that, after drive 0 fails, all 30 surviving drives will work together to restore the lost data/parity:

- All 30 drives read, because unlike the raidz1 configuration shown above, in the dRAID1 configuration the neighbor drives of the failed drive 0 (i.e. drives in a same data+parity group) are not fixed.
- All 30 drives write, because now there is no dedicated spare drive. Instead, spare blocks come from all drives.

To summarize:

- Normal application IO: dRAID and raidz are very similar. There is a slight advantage in dRAID, since there is no dedicated spare drive that is idle when not in use.
- Restore lost data/parity: for raidz, not all surviving drives will work to rebuild, and in addition, it is bounded by the write throughput of a single replacement drive. For dRAID, the rebuild speed will scale with the total number of drives because all surviving drives will work to rebuild.

The dRAID VDEV must shuffle its child drives in a way that regardless of which drive has failed, the rebuild IO (both read and write) will distribute evenly among all surviving drives, so the

rebuild speed will scale. The exact mechanism used by the dRAID VDEV driver is beyond the scope of this simple introduction here. If interested, please refer to the recommended readings in the next section.

2.1.2 Recommended Reading

Parity declustering (the term used for shuffling drives) has been an active research topic, and many papers have been published in this area. The <u>Permutation Development Data Layout</u> is a recommended paper to begin. The dRAID VDEV driver uses a shuffling algorithm loosely based on the mechanism described in this paper.

2.2 Using dRAID

The dRAID code will be included in the ZFS on Linux distribution. Build spl and zfs with configure, and install. Then load the zfs kernel module with the following options:

- zfs_vdev_scrub_min_active=2 zfs_vdev_scrub_max_active=10 zfs_vdev_async_write_min_active=8: These options help dRAID rebuild performance.
- draid_debug_lvl=5: This option controls the verbosity level of dRAID debug traces, which is very useful for troubleshooting.

2.2.1 Create a dRAID VDEV

Unlike a raidz VDEV, before a dRAID VDEV can be created, a configuration file must be created with the draidcfg command:

```
# draidcfg -p 1 -d 4 -s 2 -n 17 17.nvl
Not enough entropy at /dev/random: read -1, wanted 8.
Using /dev/urandom instead.
Worst ( 3 x 5 + 2) x 544: 0.882
Seed chosen: f0cbfeccac3071b0
```

The command in the example above creates a configuration for a 17-drive dRAID1 VDEV with four data blocks per strip and two distributed spares, and saves it to file *17.nvl*.

Options:

- p: parity level, can be 1, 2, or 3.
- d: # data blocks per stripe.
- s: # distributed spare
- n: total # of drives
- It's required that: (n s) % (p + d) == 0

Note:

• Errors like "Not enough entropy at /dev/random" are harmless

• In the future, the *draidcfg* may get integrated into *zpool create* so there would be no separate step for configuration generation.

The configuration file is binary, to examine the contents:

```
# draidcfg -r 17.nvl
dRAID1 vdev of 17 child drives: 3 x (4 data + 1 parity) and 2 distributed
spare
Using 32 base permutations
   1,12,13, 5,15,11, 2, 6, 4,16, 9, 7,14,10, 3, 0, 8,
   0, 1, 5,10, 8, 6,15, 4, 7,14, 2,13,12, 3,11,16, 9,
  1, 7,11,13,14,16, 4,12, 0,15, 9, 2,10, 3, 6, 5, 8,
   5,16, 3,15,10, 0,13,11,12, 8, 2, 9, 6, 4, 7, 1,14,
  9,15, 6, 8,12,11, 7, 1, 3, 0,13, 5,16,14, 4,10, 2,
  10, 1, 5,11, 3, 6,15, 2,12,13, 9, 4,16,14, 0, 7, 8,
 10,16,12, 7, 1, 3, 9,14, 5,15, 4,11, 2, 0,13, 8, 6,
   7,12, 4,13, 6,11, 9,15,14, 2,16, 3, 0, 1,10, 5, 8,
 10, 5, 8, 2, 1,11,16,15,12, 3,13, 4, 0, 7, 9, 6,14,
  1, 6,15, 0,14, 5, 9,11, 8,16,10, 2,13,12, 3, 4, 7,
 14, 4, 2, 0,12, 7, 3, 6, 8,13,10, 1,11,16,15, 9, 5,
  6,14, 8,10, 1, 0,15, 4, 5, 3,16,13, 9,12, 2, 7,11,
  13, 5, 8,14, 1,10,16,11,15, 7, 0,12, 2, 9, 4, 6, 3,
  9, 6, 3, 7, 15, 1, 4, 8, 14, 5, 0, 2, 16, 10, 12, 11, 13,
 12, 0, 6, 7, 1, 9,14, 8,11,16, 4, 2,13,15, 3, 5,10,
  14, 6,12,10,15,13, 7, 0, 3,16, 5, 9, 2, 8, 4,11, 1,
 15,16, 8,13, 6, 4, 7,11, 1, 2,14,12,10, 5, 9, 3, 0,
   0,11,10,14,12, 1,16, 3,13, 9, 5, 7, 2, 4, 6,15, 8,
   2,10,12, 4, 3, 5,15, 1,11, 0, 7,13, 6, 9,14, 8,16,
 11, 8,16,12, 6,13,10, 9, 2, 7, 3, 4, 5, 0,14,15, 1,
   4,16,12,15,14, 3, 7, 1, 9,10, 6, 8,11, 0,13, 2, 5,
   5,16,13,11, 4, 6, 7,12, 0, 9,15, 1,14, 3, 8,10, 2,
  12, 6, 7, 0,10,15, 8, 2,16,14,11, 1, 4, 5, 9,13, 3,
  8, 4, 1,13, 6, 5, 0,15, 7, 3,11,14,16, 9,10,12, 2,
  16,14,15, 2,10,11, 6,13, 4, 9, 8, 0, 5,12, 3, 1, 7,
   9, 6, 8, 3, 12, 14, 16, 13, 11, 10, 4, 5, 7, 15, 2, 0, 1,
  3, 9,15, 0, 7, 1, 8,11,12, 2,10, 6,13,16, 5,14, 4,
  0,14, 6,16, 1,10, 9,15,12, 8,11, 3, 2, 7,13, 5, 4,
  12,13, 9, 5,11, 6, 3, 4,14,10, 1, 7, 8, 2, 0,16,15,
 16, 9, 0, 2, 3,10, 1,11, 6, 4,13,12,14, 7, 5,15, 8,
  16, 9, 6, 0, 1, 4,11,14,12, 3, 2,15,13,10, 5, 8, 7,
  7, 8,11,14,10, 6,15,13, 1, 4,16, 9, 2, 3, 0,12, 5,
```

Now a dRAID VDEV can be created using the configuration. The only difference from a normal *zpool create* is the addition of a configuration file in the VDEV specification:

zpool create -f tank draid1 cfg=17.nvl sdd sde sdf sdg sdh sdi sdj sdk sdl sdm sdn sdo sdp sdq sdr sds sdt

Note:

• The total number of drives must equal the *-n* option of *draidcfg*.

• The parity level must match the *-p* option (for example, use draid3 for *draidcfg -p 3*).

When the numbers do not match, *zpool create* will fail but with a generic error message, which can be confusing.

Now the dRAID VDEV is online and ready for IO:

<pre># zpool status pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM tank ONLINE 0 0 0 draid1-0 ONLINE 0 0 0 sdd ONLINE 0 0 0 sdd ONLINE 0 0 0 sdf ONLINE 0 0 0 sdf ONLINE 0 0 0 sdf ONLINE 0 0 0 sdg ONLINE 0 0 0 sdu ONLINE 0 0 0 sdu</pre>							
state: ONLINE config: NAME STATE READ WRITE CKSUM tank ONLINE 0 0 0 draid1-0 ONLINE 0 0 0 sdd ONLINE 0 0 0 sde ONLINE 0 0 0 sdf ONLINE 0 0 0 sdg ONLINE 0 0 0 sdh ONLINE 0 0 0 sdu ONLINE 0 0 0 sdj ONLINE 0 0 0 sdj ONLINE 0 0 0 sdi ONLINE 0 0 0 sdn ONLINE 0 sdn	# zpool	status					
config: NAME STATE READ WRITE CKSUM tank ONLINE 0 0 0 draid1-0 ONLINE 0 0 0 sdd ONLINE 0 0 0 sde ONLINE 0 0 0 sdf ONLINE 0 0 0 sdf ONLINE 0 0 0 sdg ONLINE 0 0 0 sdh ONLINE 0 0 0 sdu ONLINE 0 0 0 sdj ONLINE 0 0 0 sdj ONLINE 0 0 0 sdl ONLINE 0 0 0 sdn ONLINE 0	pool:	tank					
NAMESTATEREADWRITECKSUMtankONLINE00draid1-0ONLINE00sddONLINE00sdeONLINE00sdfONLINE00sdgONLINE00sdgONLINE00sddONLINE00sdgONLINE00sduONLINE00sduONLINE00sdyONLINE00sdiONLINE00sdiONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00sdaONLINE00	state:	ONLINE					
tank ONLINE 0 0 0 draid1-0 ONLINE 0 0 0 sdd ONLINE 0 0 0 sde ONLINE 0 0 0 sdf ONLINE 0 0 0 sdf ONLINE 0 0 0 sdg ONLINE 0 0 0 sdg ONLINE 0 0 0 sdh ONLINE 0 0 0 sdu ONLINE 0 0 0 sdu ONLINE 0 0 0 sdy ONLINE 0 0 0 sdd ONLINE 0 0 0 sdh ONLINE 0 0 0 sdh ONLINE 0 0 0 sdh ONLINE 0 0 0 sdo ONLINE 0 0 0 sdq ONLINE 0 0 0 sdq	config:						
tank ONLINE 0 0 0 draid1-0 ONLINE 0 0 0 sdd ONLINE 0 0 0 sde ONLINE 0 0 0 sdf ONLINE 0 0 0 sdf ONLINE 0 0 0 sdg ONLINE 0 0 0 sdg ONLINE 0 0 0 sdh ONLINE 0 0 0 sdu ONLINE 0 0 0 sdu ONLINE 0 0 0 sdy ONLINE 0 0 0 sdd ONLINE 0 0 0 sdh ONLINE 0 0 0 sdh ONLINE 0 0 0 sdh ONLINE 0 0 0 sdo ONLINE 0 0 0 sdq ONLINE 0 0 0 sdq							
draid1-0 ONLINE 0 0 sdd ONLINE 0 0 sde ONLINE 0 0 sdf ONLINE 0 0 sdg ONLINE 0 0 sdg ONLINE 0 0 sdg ONLINE 0 0 sdu ONLINE 0 0 sdu ONLINE 0 0 sdy ONLINE 0 0 sdh ONLINE 0 0 sdh ONLINE 0 0 sdh ONLINE 0 0 sdo ONLINE 0 0 sdq ONLINE 0 0 sdq ONLINE 0 0 sdq ONLINE 0 0 sdr ONLINE		NAME	STATE	READ	WRITE	CKSUM	
sddONLINE000sdeONLINE000sdfONLINE000sdgONLINE000sdhONLINE000sduONLINE000sduONLINE000sdyONLINE000sdyONLINE000sdyONLINE000sdnONLINE000sdnONLINE000sdqONLINE000sdqONLINE000sdqONLINE000sdrONLINE000sdsONLINE000sdsONLINE000		tank	ONLINE	0	0	0	
sde ONLINE 0 0 sdf ONLINE 0 0 sdg ONLINE 0 0 sdh ONLINE 0 0 sdu ONLINE 0 0 sdj ONLINE 0 0 sdy ONLINE 0 0 sdy ONLINE 0 0 sdv ONLINE 0 0 sdl ONLINE 0 0 sdd ONLINE 0 0 sdd ONLINE 0 0 sdd ONLINE 0 0 sdm ONLINE 0 0 sdo ONLINE 0 0 sdq ONLINE 0 0 sdq ONLINE 0 0 sdq ONLINE 0 0 sdr ONLINE 0 0 sds ONLINE 0 0 sdt ONLINE 0 0		draid1-0	ONLINE	0	0	0	
sdf ONLINE 0 0 0 sdg ONLINE 0 0 0 sdh ONLINE 0 0 0 sdu ONLINE 0 0 0 sdy ONLINE 0 0 0 sdh ONLINE 0 0 0 sdh ONLINE 0 0 0 sdh ONLINE 0 0 0 sdm ONLINE 0 0 0 sdo ONLINE 0 0 0 sdq ONLINE 0 0 0 sdq ONLINE 0 0 0 sds ONLINE 0 0 0 sdt ONLINE 0 0 0		sdd	ONLINE	0	0	0	
sdg ONLINE 0 0 0 sdh ONLINE 0 0 0 sdu ONLINE 0 0 0 sdj ONLINE 0 0 0 sdv ONLINE 0 0 0 sdv ONLINE 0 0 0 sdt ONLINE 0 0 0 sdm ONLINE 0 0 0 sdm ONLINE 0 0 0 sdm ONLINE 0 0 0 sdn ONLINE 0 0 0 sdo ONLINE 0 0 0 sdq ONLINE 0 0 0 sdq ONLINE 0 0 0 sdr ONLINE 0 0 0 sds ONLINE 0 0 0 sdt ONLINE 0 0 0		sde	ONLINE	0	0	0	
sdhONLINE000sduONLINE000sdjONLINE000sdvONLINE000sdlONLINE000sdmONLINE000sdmONLINE000sdnONLINE000sdnONLINE000sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000		sdf	ONLINE	0	0	0	
sduONLINE000sdjONLINE000sdvONLINE000sd1ONLINE000sdmONLINE000sdnONLINE000sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000		sdg	ONLINE	0	0	0	
sdjONLINE000sdvONLINE000sdlONLINE000sdmONLINE000sdnONLINE000sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdrONLINE000sdsONLINE000		sdh	ONLINE	0	0	0	
sdvONLINE000sdlONLINE000sdmONLINE000sdnONLINE000sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000		sdu	ONLINE	0	0	0	
sdlONLINE000sdmONLINE000sdnONLINE000sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000		sdj	ONLINE	0	0	0	
sdmONLINE000sdnONLINE000sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000sdsONLINE000		sdv	ONLINE	0	0	0	
sdnONLINE000sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000sdsONLINE000		sdl	ONLINE	0	0	0	
sdoONLINE000sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000sdtONLINE000		sdm	ONLINE	0	0	0	
sdpONLINE000sdqONLINE000sdrONLINE000sdsONLINE000sdtONLINE000		sdn	ONLINE	0	0	0	
sdqONLINE000sdrONLINE000sdsONLINE000sdtONLINE000		sdo	ONLINE	0	0	0	
sdr ONLINE 0 0 0 sds ONLINE 0 0 0 sdt ONLINE 0 0 0		sdp	ONLINE	0	0	0	
sds ONLINE 0 0 0 sdt ONLINE 0 0 0		sdq	ONLINE	0	0	0	
sdt ONLINE 0 0 0		sdr	ONLINE	0	0	0	
		sds	ONLINE	0	0	0	
spares		sdt	ONLINE	0	0	0	
-		spares					
\$draid1-0-s0 AVAIL		\$draid1-0-s0	AVAIL				
\$draid1-0-s1 AVAIL		\$draid1-0-s1	AVAIL				

There are two logical spare VDEVs shown above at the bottom:

- The names begin with a '\$' followed by the name of the parent dRAID VDEV.
- These spare are logical, made from reserved blocks on all the 17 child drives of the dRAID VDEV.
- Unlike traditional hot spares, the distributed spare can only replace a drive in its parent dRAID VDEV.

The dRAID VDEV behaves just like a raidz VDEV of the same parity level (IO to/from it, scrub it, fail a child drive and it would operate in degraded mode).

2.2.2 Sequential Rebuild

When there is a bad/offlined/failed child drive, the dRAID VDEV supports a completely new mechanism to reconstruct lost data/parity, in addition to the resilver. First of all, resilver is still supported - if a failed drive is replaced by another physical drive, the resilver process is used to reconstruct lost data/parity to the new replacement drive, which is the same as a resilver in a raidz VDEV.

But if a child drive is replaced with a distributed spare, a new process called rebuild is used instead of resilver:

# zpool	offline tank sdo								
	replace tank sdo '\$draid1-0-s0'								
# zpool	status								
pool:	tank								
	DEGRADED								
status:	One or more devices	has been	taken of	fline	by the ad	ministrator.			
	Sufficient replicas	exist for	the poc	l to	continue f	unctioning in a			
	degraded state.								
action:	Online the device u	sing 'zpoc	ol online	e' or :	replace th	e device with			
	'zpool replace'.								
scan:	rebuilt 2.00G in Oh	0m5s with	0 errors	on F	ri Feb 24	20:37:06 2017			
config:									
	NAME	STATE	READ WR	ITE C	KSUM				
	tank	DEGRADED	0	0	0				
	draid1-0	DEGRADED	0	0	0				
	sdd	ONLINE	0	0	0				
	sde	ONLINE	0	0	0				
	sdf	ONLINE	0	0	0				
	sdg	ONLINE	0	0	0				
	sdh	ONLINE	0	0	0				
	sdu	ONLINE	0	0	0				
	sdj	ONLINE	0	0	0				
	sdv	ONLINE	0	0	0				
	sdl	ONLINE	0	0	0				
	sdm	ONLINE	0	0	0				
	sdn	ONLINE	0	0	0				
	spare-11	DEGRADED	0	0	0				
	sdo	OFFLINE	0	0	0				
	\$draid1-0-s0	ONLINE	0	0	0				
	sdp	ONLINE	0	0	0				
	sdq	ONLINE	0	0	0				
	sdr	ONLINE	0	0	0				
	sds	ONLINE	0	0	0				
	sdt	ONLINE	0	0	0				
	spares								
	\$draid1-0-s0	INUSE	current	ly in	use				

\$draid1-0-s1 AVAIL

The scan status line of the *zpool status* output now says "*rebuilt*" instead of "*resilvered*", because the lost data/parity was rebuilt to the distributed spare by a brand new process called "*rebuild*". The main differences from *resilver* are:

- The rebuild process does not scan the whole block pointer tree. Instead, it only scans the spacemap objects.
- The IO from rebuild is sequential, because it rebuilds metaslabs one by one in sequential order.
- The rebuild process is not limited to block boundaries. For example, if 10 64K blocks are allocated contiguously, then rebuild will fix 640K at one time. So rebuild process will generate larger IOs than resilver.
- For all the benefits above, there is one price to pay. The rebuild process cannot verify block checksums, since it does not have block pointers.
- Moreover, the rebuild process requires support from on-disk format, and **only** works on dRAID and mirror VDEVs. Resilver, on the other hand, works with any VDEV (including dRAID).

Although the rebuild process creates larger IOs, the drives will not necessarily see large IO requests. The block device queue parameter */sys/block/*/queue/max_sectors_kb* must be tuned accordingly. However, since the rebuild IO is already sequential, the benefits of enabling larger IO requests might be marginal.

At this point, redundancy has been fully restored without adding any new drive to the pool. If another drive is offlined, the pool is still able to do IO:

<pre># zpool offlin</pre>	e tank sdj							
<pre># zpool status</pre>	status							
state: DEGRADE	D							
status: One or	more devices has been	taken of	fline	e by the	administrat			
Suffici	ent replicas exist for	r the pool	l to	continue	functionir	ng in a		
degrade	ed state.							
action: Online	the device using 'zpoo	ol online	' or	replace	the device	with		
'zpool	replace'.							
scan: rebuilt	2.00G in OhOm5s with	0 errors	on F	ri Feb 2	4 20:37:06	2017		
config:								
NAME	STATE	READ WR	ITE (CKSUM				
tank	DEGRADED	0	0	0				
draid	1-0 DEGRADED	0	0	0				
sdd	ONLINE	0	0	0				
sde	ONLINE	0	0	0				
sdf	ONLINE	0	0	0				
sdg	ONLINE	0	0	0				
sdh	ONLINE	0	0	0				
sdu	ONLINE	0	0	0				

sdj	OFFLINE	0	0	0	
sdv	ONLINE	0	0	0	
sdl	ONLINE	0	0	0	
sdm	ONLINE	0	0	0	
sdn	ONLINE	0	0	0	
spare-11	DEGRADED	0	0	0	
sdo	OFFLINE	0	0	0	
\$draid1-0-s0	ONLINE	0	0	0	
sdp	ONLINE	0	0	0	
sdq	ONLINE	0	0	0	
sdr	ONLINE	0	0	0	
sds	ONLINE	0	0	0	
sdt	ONLINE	0	0	0	
spares					
\$draid1-0-s0	INUSE	current	ly in	use	
\$draid1-0-s1	AVAIL				

As shown above, the *draid1-0* VDEV is still in *DEGRADED* mode although two child drives have failed and it's only single-parity. Since the *\$draid1-0-s1* is still *AVAIL*, full redundancy can be restored by replacing *sdj* with it, without adding new drive to the pool:

# zpool	replace tank sdj '\$	draid1-0-s1'						
# zpool	status							
state:	DEGRADED							
status:	One or more devices	has been tal	ken off	line b	by the administrator.			
	Sufficient replicas	exist for the	ne pool	to co	ontinue functioning in a			
	degraded state.							
action:	Online the device u	sing 'zpool d	online'	or re	eplace the device with			
	'zpool replace'.							
scan:	rebuilt 2.13G in Oh	0m5s with 0 e	errors	on Fri	Feb 24 23:20:59 2017			
config:								
	NAME	STATE RE	EAD WRI	TE CKS	SUM			
	tank	DEGRADED	0	0	0			
	draid1-0	DEGRADED	0	0	0			
	sdd	ONLINE	0	0	0			
	sde	ONLINE	0	0	0			
	sdf	ONLINE	0	0	0			
	sdg	ONLINE	0	0	0			
	sdh	ONLINE	0	0	0			
	sdu	ONLINE	0	0	0			
	spare-6	DEGRADED	0	0	0			
	sdj	OFFLINE	0	0	0			
	\$draid1-0-s1	ONLINE	0	0	0			
	sdv	ONLINE	0	0	0			
	sdl	ONLINE	0	0	0			
	sdm	ONLINE	0	0	0			

sdn	ONLINE	0	0	0
spare-11	DEGRADED	0	0	0
sdo	OFFLINE	0	0	0
\$draid1-0-s0	ONLINE	0	0	0
sdp	ONLINE	0	0	0
sdq	ONLINE	0	0	0
sdr	ONLINE	0	0	0
sds	ONLINE	0	0	0
sdt	ONLINE	0	0	0
spares				
\$draid1-0-s0	INUSE	current	ly in	use
\$draid1-0-s1	INUSE	current	ly in:	use

Again, full redundancy has been restored without adding any new drive. If another drive fails, the pool will still be able to handle IO, but there'd be no more distributed spare to rebuild (both are in *INUSE* state now). At this point, there's no urgency to add a new replacement drive because the pool can survive yet another drive failure.

2.2.2.1 Dynamic Rebuild Throttling

The rebuild process may delay zio according to the ZFS options <code>spa_vdev_scan_delay</code> and <code>spa_vdev_scan_idle</code>, which works in a similar way as options used by resilver <code>zfs_scan_idle</code> and <code>zfs_resilver_delay</code>. Moreover, when a dRAID VDEV has lost all redundancy, e.g. a draid2 with 2 faulted child drives, the rebuild process will go full speed by ignoring <code>spa_vdev_scan_delay</code> and <code>spa_vdev_scan_idle</code> altogether because the VDEV is now in critical state.

After delaying, the rebuild zio is issued using priority ZIO_PRIORITY_SCRUB for reads and ZIO_PRIORITY_ASYNC_WRITE for writes. Therefore the options that control the queuing of these two IO priorities will affect rebuild zio as well, for example zfs_vdev_scrub_min_active, zfs_vdev_scrub_max_active, zfs_vdev_async_write_min_active, and zfs_vdev_async_write_max_active.

2.2.3 dRAID-aware Spare Space Rebalancing

Distributed spare space can be made available again by simply replacing any failed drive with a new drive. This process is called *rebalance* which is essentially a *resilver*:

```
# zpool replace -f tank sdo sdw
# zpool status
state: DEGRADED
status: One or more devices has been taken offline by the administrator.
    Sufficient replicas exist for the pool to continue functioning in a
    degraded state.
action: Online the device using 'zpool online' or replace the device with
    'zpool replace'.
    scan: resilvered 2.21G in 0h0m58s with 0 errors on Fri Feb 24 23:31:45 2017
config:
```


NAME	STATE	READ	WRITE	CKSUM
tank	DEGRADED	0	0	0
draid1-0	DEGRADED	0	0	0
sdd	ONLINE	0	0	0
sde	ONLINE	0	0	0
sdf	ONLINE	0	0	0
sdg	ONLINE	0	0	0
sdh	ONLINE	0	0	0
sdu	ONLINE	0	0	0
spare-6	DEGRADED	0	0	0
sdj	OFFLINE	0	0	0
\$draid1-0-s1	ONLINE	0	0	0
sdv	ONLINE	0	0	0
sdl	ONLINE	0	0	0
sdm	ONLINE	0	0	0
sdn	ONLINE	0	0	0
sdw	ONLINE	0	0	0
sdp	ONLINE	0	0	0
sdq	ONLINE	0	0	0
sdr	ONLINE	0	0	0
sds	ONLINE	0	0	0
sdt	ONLINE	0	0	0
spares				
\$draid1-0-s0	AVAIL			
\$draid1-0-s1	INUSE	curre	ently i	n use

Note that the scan status now shows "*resilvered*". In addition, the state of \$*draid1-0-s0* has become *AVAIL* again. Since the resilver process checks block checksums, it makes up for the lack of checksum verification during previous rebuild.

The dRAID1 VDEV in this example shuffles three (4 data + 1 parity) redundancy groups to the 17 drives. For any single drive failure, only about 1/3 of the blocks are affected (and should be resilvered/rebuilt). The rebuild process is able to avoid unnecessary work, but the resilver process by default will not. The rebalance (which is essentially resilver) can speed up a lot by setting module option *zfs_no_resilver_skip* to 0. This feature is turned off by default because of issue https://github.com/zfsonlinux/zfs/issues/5806.

2.2.4 Troubleshooting

Please report bugs to <u>the dRAID project</u>, as long as the code is not merged upstream. The following information would be useful:

- dRAID configuration, i.e. the *.nvl file created by *draidcfg* command.
- Output of *zpool events -v*

• dRAID debug traces, which by default goes to *dmesg* via *printk()*. The dRAID debugging traces can also use *trace_printk()*, which is more preferable but unfortunately GPL only. It can be enabled by editing the META file to change the license (strictly for debugging only

2.3 Administration of dRAID for ZFS

2.3.1 Introduction

This chapter describes the administration of the dRAID for ZFS implementation

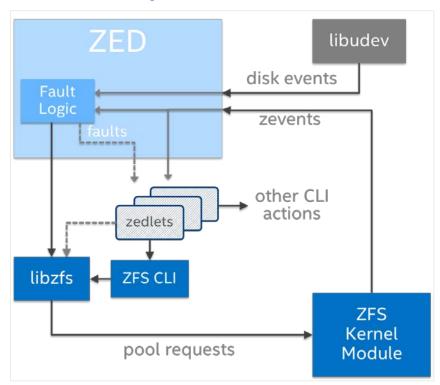
2.3.2 Command Line Interface

The ZFS block allocation code has been refactored to accommodate support for multiple metadata classes backed by one or more virtual devices. Fine grain accounting, by class distinction, was added to each runtime metaslab instance and is persistently stored in the ondisk space map object. The ZFS ztest tool was modified to exercise new metadata allocation code paths (section 5).

The CLI implementation for administering metadata classes is a set of extensions to the existing zpool(1) and zdb(1) commands. The augmented CLI allows metadata classes to be specified on pool create and later when adding additional VDEVs to a pool. In the CLI commands that display VDEV configurations, we added a class info summary to differentiate a VDEV's classes.

It is worth noting that in the ZFS CLI there are several methods of exposing the pool configuration, and metadata isolation had to be adapted for each method (Figure 2-1). Testing uncovered that some of the testing tools assumed a predetermined format for list log specific devices and we had to revert our generalizations for the specific case of logs (class = 'log').

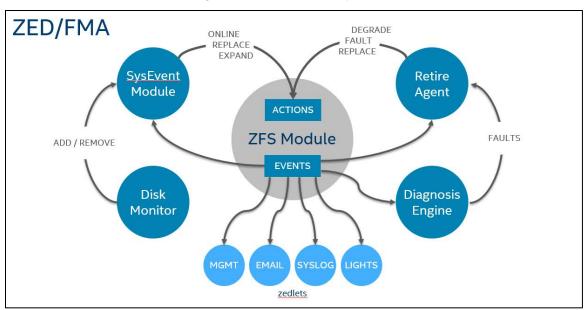
zpool status <pool></pool>
zpool list -v <pool></pool>
zpool iostat -v <pool></pool>
zpool import
<pre>zpool create -n <pool> <vdev></vdev></pool></pre>
zpool add -n <pool> <vdev></vdev></pool>
zdb -C <pool></pool>
zdb -s <pool></pool>


Figure 2-1. ZFS Commands Modified for Metadata Isolation

2.4 Tuning dRAID for ZFS

3 ZED Fault Handling

The Fault Management Architecture (FMA) has been migrated from OpenZFS to the Linux ZFS Event Daemon (ZED). Before this integration, ZED received events from the ZFS kernel module and called scripts, called zedlets, to respond to specific events. The addition of FMA allowed ZED to refine event processing so zedlets would only be called for specific faults (Figure 3-1). FMA provides critical fault logic to ZED and enables automatic rebuild and rebalance for dRAID and RAIDZ VDEVs.



3.1 Introduction

The Fault Management Architecture (Figure 3-2) consists of four components-- the Diagnosis Engine, the Retire Agent, the SLM (syseventd loadable module) and the Disk Event Monitor -that evaluate and act upon storage events and faults. The Diagnosis Engine receives events from ZFS and evaluates faults for the VDEVs in the system. The Retire Agent responds to diagnosed faults and, if necessary, initiates automatic rebuilds. The Agent will notify the ZFS kernel of the change in the VDEV state (degraded or faulted). When the Disk Monitor encounters a drive replacement, the event will be received by the Retire Agent, which will initiate rebalancing data from the surviving drives to replace the new drive for the failed one.

3.2 Spare Device Matching

With the addition of Allocation Classes and dRAID, the nature of spare devices has changed. Before these two features were added, all spares were essentially equal and any spare could be used to effectively replace any drive in the pool. With the introduction of dRAID, however, spare drives are no longer physical devices. With the introduction of the special allocation classes, additional characteristics, such as size and type of drive, are important in selecting a spare.

A spare drive in a dRAID is a virtual spare composed of blocks randomly scattered across all of the physical devices in the pool. The nature of a dRAID spare means that a zpool with multiple dRAID VDEVs can only replace a failed drive with a spare that shares the same dRAID parent VDEV. A normal physical drive can also be used as a spare for a dRAID VDEV, but doing so will trigger a resilver of the pool. Since resilvering is a significantly slower operation than a dRAID sequential rebuild, using a normal drive defeats the purpose of using dRAID and should only be done if a dRAID distributed spare is unavailable. To address these concerns the Retire Agent in ZED will only attempt to spare-in a drive to a dRAID VDEV if the spare VDEV is a distributed spare (\$draid) that has the same parent identifier as the dRAID VDEV it is being spared into.

Metadata Isolation (Section 4) uses a special allocation class to save ZFS metadata and small block data to metaslabs segregated from the RAID VDEV or to physical disks in a dedicated VDEV. When a dedicated tier is used, a different type of physical disk may be used to back this tier. For example, for a metadata heavy workload, a dedicated pair of SSDs may be used and a spare for this tier also be an SSD of similar size. The not just match the type, but the size of dedicated device being replaced. To accommodate these concerns, ZED will check if

the drive being replaced has an allocation bias and then take into account these characteristics in selecting an appropriate spare.

Since a segregated VDEV is allocated from the parent RAIDz or dRAID VDEV, sparing is done in the context of the parent. In other words, sparing the parent will also spare the segregated VDEV.

3.3 Multi-path Support

Lustre servers are deployed in high-availability (HA) pairs in which paired servers have access to each other's storage pools. On failure, the surviving server depends on Linux multi-pathing to mount the other server's storage. As a result, the FMA Diagnosis Engine and Retire Agent must be able to support the Linux architecture. ZFS multi-path support had been started by the ZFS community. We are currently collaborating with the community to ensure their code works with our feature (see this commit for details).

3.4 ZED Watchdog Timer

To prevent a hung zedlet from hanging ZED all together, a watchdog timer (10s) is included to keep zedlets from hanging.

3.5 Multi-Fault Support

A RAIDZ VDEV can handle multiple drive failures in parallel. The structure of the block pointer tree traversal effectively enables queueing of subsequent failures. Reconstruction of a second drive can proceed after the repair of the first driver completes ahead of it in the tree. Because scanning metaslabs during the dRAID sequential rebuild is a serial process, dRAID cannot repair a second driver until the first failure is completely rebuilt. As a result, while rebuilding one failed drive, dRAID does not have the ability to queue subsequent failures.

Due to the way ZED interacts with the ZFS kernel module when it attempts to attach a spare drive to a pool, if a rebuild or resilver is in progress it will be told that the pool is busy and the attach cannot happen. Without multi-fault support, ZED would mark the spare attempt as resolved and move on to processing other events, thus losing the event and need to rebuild the dRAID. The current Retire Agent in ZED was modified to save off the spare request to be replayed later.

The Retire Agent also receives resilver_finished and rebuild_finished events. When either of these events arrives, the Retire Agent will check for a saved spare request and, if it finds one, will replay the request to begin rebuilding the failed drive. This is implemented so that any number of drives can be faulted and spared-in as long as there are spares available.

4 Metadata Isolation

4.1 Introduction

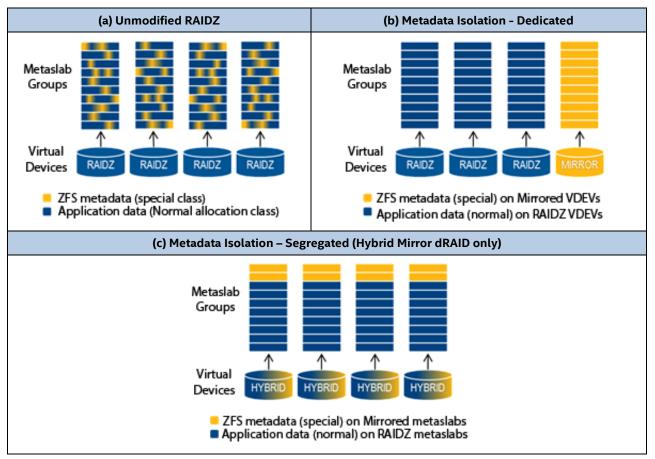
Metadata Isolation improves large block streaming performance by ensuring that large allocations for application data are not impeded by smaller allocations for ZFS metadata and the subsequent data fragmentation that results when smaller and larger blocks compete for space in ZFS allocation areas (metaslabs).

ZFS already includes the concept of separate storage classes associated with a ZFS pool to create write and read caches (SLOG and L2ARC, respectively) to improve storage performance. The Metadata Isolation feature adds a new allocation class ("special") to hold specific ZFS metadata types and small block application data separate from large block application data.

Allocation classes can be thought of as allocation tiers that are dedicated to specific block categories: the special class, which captures ZFS metadata and small block application data, will occupy a mirrored VDEV and the normal class, which captures all application data, will consume the dRAID or RAIDZ VDEV. Metadata Isolation is an independent feature from the underlying RAID mechanism used for the normal class data.

Exercising the feature requires that each pool be comprised of at least one (special) class. As with the cache or log classes, a special allocation class VDEV can be added at the time the storage pool is created or it can be added at a later time. If the special allocation VDEV is written after the pool is created, only newly written metadata will reside in the newly added VDEV. In general, the capacity of an allocation class VDEV can be expanded by adding additional VDEVs to that class or by replacing existing VDEV devices with a larger device (via ZFS auto-expand).

Each class type represents exclusive allocations but metadata types can be combined onto the associated VDEV. The normal class will accept all block types not being steered into the special class already and serves as the fallback allocator for all classes.


Isolating ZFS metadata and small block I/O to a separate mirrored VDEV decreases fragmentation within the normal class so that allocations of large, contiguous data blocks is less constrained and data can be streamed more efficiently to and from each disk.

The cost of using a dedicated VDEV to isolate the metadata , however, is if the disks in the VDEV are in the same enclosure as the disks used for dRAID, those mirrored disks are unavailable to participate in the dRAID rebuild following a drive failure.

The Metadata Isolation solution created is a hybrid mirror VDEV that combines the mirrored ZFS metadata in separate regions of the dRAID VDEV. Metadata Isolation can be combined on the same disks with dRAID by defining class allocation functionality at the metaslab level and mixing metaslabs in the same VDEV. The Hybrid solution makes all drives available for data and ensures their full participation in the dRAID rebuild following a drive failure.

Metadata Isolation enables different allocation policies for each ZFS data class. Application data can use RAIDZ VDEVs while ZFS metadata and small file system data can use mirrored VDEVs. There are two Opt-in variations for allocation classes: **Dedicated** and **Segregated**.

Figure 4-1. Transition from Unmodified RAIDZ to Hybrid Mirror Configuration

The diagram above (Figure 4-1) illustrates the transition from unmodified RAIDZ configurations to the Hybrid Mirror configuration:

a. Unmodified RAIDz:

The application data and ZFS metadata are co-allocated within ZFS metaslabs of RAIDZ VDEVs.

- b. Metadata Isolation Dedicated The mirrored VDEV for the ZFS metadata and small block I/O (i.e., the "special" allocation class) is created from a separate set of physical VDEVs dedicated for the special class.
- c. Metadata Isolation -- Segregated

The mirrored VDEV is created from a set of metaslabs allocated from a dRAID VDEV. In this way, the metaslabs for the special class are segregated from the metaslabs used for the normal class.

These variations are mutually exclusive use cases. A VDEV may only use one type.

4.2 Dedicated VDEVs

All metaslabs in the VDEV are dedicated to a specific allocation class category. A pool must always have at least one general (non-specified) VDEV when using dedicated VDEVs. This configuration is selected as an "Opt-in" using a VDEV class designation keyword when creating the VDEV. Valid designation keywords are :

special | log

The dedicated class can currently only be specified with mirrored VDEVs.

Example Syntax:

```
zpool create demo raidz <disks> special mirror <disks>
zpool add demo special mirror <disks>
```

The first command creates the demo pool with 'special' class on the specified mirror disks. The second command adds additional disks to the special mirror created by the 1st command. Adding disks is only possible with dedicated VDEVs.

4.3 Segregated VDEVs

In the segregated use case, a portion of a VDEV's metaslabs are set aside for a specific allocation class when the pool is created. Opt-in for this feature is global to the pool using a boolean pool property. The following properties have been defined:

```
segregate_log=on
segregate_special=on
```

These "segregate" properties can be combined if multiple segregation categories are desired (e.g., segregate log class and segregate special class from normal class).

Example Syntax:

zpool create -o segregate_special=on demo raidz <disks>

This command creates a RAIDz pool named demo with segregation enabled for the special allocation class.

4.3.1 Segregation Percentage

Segregated VDEVs can only be created during zpool creation. It is not possible to add additional segregated VDEVs to an allocation class at a later time, as is possible with dedicated VDEVs.

By default, the following segregation limits are applied:

- segregate_log -- sets aside one metaslab per VDEV for the log class.
- segregate_special -- sets aside 20% of a VDEV's metaslabs for the special class.

The segregated metaslabs are dynamically assigned using a first available algorithm when the VDEV is opened. Subsequent opens may shift which metaslabs are assigned, but once a metaslab is allocated from (i.e. it is activated), the preferred bias becomes persistent.

The percentage allocated to the special class can be tuned to a maximum of 50 percent. Although the number of metaslabs representing the selected percentages is set at pool creation, the assignment of an individual metaslab to the class is deferred until the allocation is needed. Nonetheless, because the ditto block policy (Section 4.3.2) requires writing ditto copies to three different metaslabs, the minimum number of metaslabs initially assigned to the "special" allocation class on a segregated metadata VDEV is three.

ZFS metadata has priority for the special allocations. Since the special class includes allocations for both ZFS metadata and small block data, 5% of a segregated VDEV's metaslabs are reserved for ZFS metadata. This policy will prevent small block usage of the special allocation from competing with ZFS metadata usage of the storage. Small block data can take advantage of the segregated VDEV as long as space is available, otherwise small block data can easily overflow to the normal class.

Block category allocation accounting can be observed from the CLI (see zdb -mm and zpool list -C).

4.3.2 Ditto Block Policy

Each ZFS block pointer structure has space for the three data virtual address (DVA) pointers. ZFS replicates its metadata and uses the DVAs to record the locations of these "ditto blocks." When there is more than one VDEV, the ditto blocks are written to different VDEVs in the pool. When there is only one VDEV available and more than one DVA is required (ditto copies > 1), the traditional ditto placement policy was to place the allocation a distance of 1/8th of total VDEV allocation space away from the other DVAs. This policy put a burden on the allocator to find a metaslab 1/8th above or below the current allocation.

A new, simplified ditto placement policy has been created to guarantee that the other DVAs simply land in a different metaslab. This policy in turn greatly simplifies ditto DVA placement from a segregated VDEV, where a group of metaslabs is not necessarily consecutive.

To validate that the new policy is honored, a zdb(8) block audit will report any DVAs that landed in the same metaslab. The expected result is that there will be none:

```
#zdb -b ssu_lost1
Traversing all blocks to verify nothing leaked ...
loading space map for vdev 0 of 1, metaslab 290 of 291 ...
26.4T completed (357720MB/s) estimated time remaining: 0hr 00min 00sec
No leaks (block sum matches space maps exactly)
```

If there is a policy failure, it will be manifest as a non-zero block audit, as shown in the following zdb audit output in which the ditto block allocation was manipulated to force the error:

```
Dittoed blocks in same metaslab: 21
```


4.4 VDEV Changes

4.4.1 Feature Flag Encapsulation

The feature@allocation_classes becomes active when a unique allocation class is instantiated by a VDEV. Activating this feature makes the pool read-only on ZFS builds that do not support allocation classes.

4.4.2 VDEV Allocation Bias

The ZFS concept of VDEV allocation bias is extended beyond the normal or log classes to include special and segregated classes. Instead of defining a number of Boolean flags, the allocation classes are now expressed in a runtime VDEV instance as an allocation bias:

This VDEV allocation class bias information is stored in the per-vdev zap object as a string value:

```
/* vdev metaslab allocation bias */
#define VDEV_ALLOC_BIAS_LOG "log"
#define VDEV_ALLOC_BIAS_SPECIAL "special"
#define VDEV_ALLOC_BIAS_SEGREGATE "segregate"
```

The bias is also passed internally in the pool config during a zpool create and any internal zpool config query. This information can be used by functions in the zpool(8) command.

4.4.3 Metaslab Allocation Bias

/*

Class allocation bias occurs at a metaslab granularity. Each metaslab has an allocation bias which is assigned when the metaslab is initialized, based on the VDEV's allocation bias. The metaslab's allocation bias then determines which metaslab group to join.

There is additional VDEV metadata stored in the VDEV_TOP_ZAP_METASLAB_INFO_OBJ object. This object is an array of ms_alloc_phys structures, one per metaslab, which tracks the allocation bias assigned to a metaslab and the allocation stats by category:

```
* Additional per-metaslab allocation info for dedicated/segregated vdevs
```


*/		
typedef struct	ms_alloc_phys {	
uint64_t	ms_alloc_flags;	/* flags: ie segregated bias */
uint64_t	ms_alloc_metadata;	<pre>/* metadata space allocated */</pre>
uint64_t	ms_alloc_smallblks;	<pre>/* smallblks space allocated */</pre>
uint64_t	ms_alloc_dedup;	<pre>/* dedup space allocated */</pre>
} ms_alloc_phy	rs_t;	

Metaslabs in dedicated VDEVs inherit the bias of the VDEV. However, in segregated VDEVs, the class allocation bias of a metaslab is assigned when the metaslab is initialized. The metaslab's allocation bias then determines which metaslab group to join.

```
/*
 * class allocation bias (segregated vdevs only)
 */
typedef enum {
    MS_ALLOC_BIAS_UNASSIGNED = 0x00,
    MS_ALLOC_BIAS_LOG = 0x01,
    MS_ALLOC_BIAS_SPECIAL = 0x02,
    MS_ALLOC_BIAS_NORMAL = 0x03
} ms_alloc_bias_t;
```

4.4.4 VDEV Allocation Stats

Status of zpool VDEVs is available through the zpool list -v command, where the mirrored dedicated VDEVs are shown as distinct members of the pool. In the example below, two drives are mirrored to create a dedicated VDEV for the special allocation class. The pool also includes two dRAID virtual spare drives.

\$ zpool list -v ost-d							
NAME	SIZE	ALLOC	FREE	EXPANDSZ	FRAG	CAP	
ost-d	16.6T	12.9G	16.6T	-	0%	0%	
draid2	16.2T	11.2G	16.2T	-	0%	0.06%	
wwn-0x5000c5007adc15a5	-	-	-	-	-	-	
wwn-0x5000c5007adc6d2f	-	-	-	-	-	-	
wwn-0x5000c5007adcf3f4	-	-	-	-	-	-	
wwn-0x5000c5007add017e	-	-	-	-	-	-	
wwn-0x5000c5007addaf56	-	-	-	-	-	-	
wwn-0x5000c5007adc6d4a	-	-	-	-	-	-	
wwn-0x5000c5007b066251	-	-	-	-	-	-	
wwn-0x5000c5007b067415	-	-	-	-	-	-	
wwn-0x5000c5007b065a87	-	-	-	-	-	-	
wwn-0x5000c5007add62b4	-	-	-	-	-	-	
wwn-0x5000c5007addb524	-	-	-	-	-	-	
wwn-0x5000c5007add4c29	-	-	-	-	-	-	
wwn-0x5000c5007add5274	-	-	-	_	-	-	

wwn-0x5000c5007add5c4b	-	-	-	-	-	-	
wwn-0x5000c5007adc7092	-	-	-	-	-	-	
wwn-0x5000c5007add591d	-	-	-	-	-	-	
wwn-0x5000c5007b34afa6	-	-	-	-	-	-	
wwn-0x5000c5007add870f	-	-	-	-	-	-	
wwn-0x5000c5007b06e13e	-	-	-	-	-	-	
wwn-0x5000c5007b067081	-	-	-	-	-	-	
special:mirror	372G	1.62G	370G	-	0%	0.43%	
wwn-0x55cd2e404c033d2e	-	-	-	-	-	-	
wwn-0x55cd2e404c033fac	-	-	-	-	-	-	
spare	-	-	-	-	-	-	
\$draid2-0-s0	-	-	-	-	-	-	
\$draid2-0-s1	-	-	-	-	-	-	

Segregated VDEVs, however, are essentially a subset of the main RAID VDEV and, as a result, status of a segregated VDEV is not available through the "zpool list -v" command. The special class allocation information is added to the vdev_stat_t structure to track the number of metaslabs assigned to the special class and the space used by the normal and special metaslabs that have been assigned.

```
typedef struct vdev_stat {
    ...
        uint64_t vs_normal_assigned; /* ms assigned space */
        uint64_t vs_special_assigned; /* ms assigned space */
        uint64_t vs_special_alloc; /* special allocated */
} vdev_stat_t;
```

This information is primarily used by the 'zpool list -C' command to query the allocation info by class category and helps determine if provisioning was done correctly.

# zpool list -C	ssu_lost1						
NAME	SIZE	ALLOC	FREE	CAPACITY			
ssu_lost1	72.7T	56.0T	16.8T	77.0%			
draid2-0	72.7T	56.0T	16.8T	77.0%			
normal	58.2T	55.8T	2.48T	95.8%			
special	2.25T	217G	2.04T	9.43%			
unassigned	12.2T	0	12.2T	-			

This example shows that 2.25TB have been assigned to the special class, but only 217GB have been used. The normal class has allocated 55.8TB of the 58.2TB available from the metaslabs assigned to this class. The pool still has over 20% of its metaslabs (12.2TB) unassigned.

4.5 Notes on Metadata Isolation

- Allocation classes are currently incompatible with PR#5258 (Open ZFS 7090 -- zfs should improve allocation order and throttle allocations). The module parameter zio_dva_throttle_enabled is set to B_FALSE in this patch and must remain disabled.
- Enabling the segregated VDEV feature is limited to pool create. The ability to enable it on an existing pool is a stated design goal but requires further testing. It is prevented (by means of a set-once property) as a conservative measure in current builds.
- The effect of causing parity hot spotting by the segregating of metadata away from file data is not known.
- The threshold zfs_class_smallblk_limit is a runtime global and should reside in the pool since the metaslab level accounting depends on it not changing.
- At this point there are no custom allocation policies and all classes use the default allocator.

5 Validation

5.1 Building and installing the ZFS Test Suite

The ZFS Test Suite runs under the test-runner framework. This framework is built alongside the standard ZFS utilities and is included as part of zfs-test package. The zfs-test package can be built from source as follows:

```
$ ./configure
$ make pkg-utils
```

The resulting packages can be installed using the rpm or dpkg command as appropriate for your distributions. Alternately, if you have installed ZFS from a distributions repository (not from source) the zfs-test package may be provided for your distribution.

```
Installed from source
rpm -ivh ./zfs-test*.rpm, or
dpkg -i ./zfs-test*.deb,
Installed from package repository
yum install zfs-test
apt-get install zfs-test
```

5.2 Running the ZFS Test Suite

The pre-requisites for running the ZFS Test Suite are:

- Three scratch disks
 - Specify the disks you wish to use in the \$DISKS variable, as a space delimited list like this: DISKS='vdb vdc vdd'. By default the zfs-tests.sh sciprt will construct three loopback devices to be used for testing: DISKS='loop0 loop1 loop2'.
- A non-root user with a full set of basic privileges and the ability to sudo(8) to root without a password to run the test.
- Specify any pools you wish to preserve as a space delimited list in the \$KEEP variable. All pools detected at the start of testing are added automatically.
- The ZFS Test Suite will add users and groups to test machine to verify functionality. Therefore it is strongly advised that a dedicated test machine, which can be a VM, be used for testing.

Once the pre-requisites are satisfied simply run the zfs-tests.sh script:

\$ /usr/share/zfs/zfs-tests.sh

Alternately, the zfs-tests.sh script can be run from the source tree to allow developers to rapidly validate their work. In this mode the ZFS utilities and modules from the source tree will

be used (rather than those installed on the system). In order to avoid certain types of failures you will need to ensure the ZFS udev rules are installed. This can be done manually or by ensuring some version of ZFS is installed on the system.

\$./scripts/zfs-tests.sh

The following zfs-tests.sh options are supported:

Test	Description
-v	Verbose zfs-tests.sh output When specified additional information describing the test environment will be logged prior to invoking test-runner. This includes the runfile being used, the DISKS targeted, pools to keep, etc.
-q	Quiet test-runner output. When specified it is passed to test-runner(1) which causes output to be written to the console only for tests that do not pass and the results summary.
-x	Remove all testpools, dm, lo, and files (unsafe). When specified the script will attempt to remove any leftover configuration from a previous test run. This includes destroying any pools named testpool, unused DM devices, and loopback devices backed by file-VDEVs. This operation can be DANGEROUS because it is possible that the script will mistakenly remove a resource not related to the testing.
-k	Disable cleanup after test failure. When specified the zfs-tests.sh script will not perform any additional cleanup when test-runner exists. This is useful when the results of a specific test need to be preserved for further analysis.
-f	Use sparse files directly instread of loopback devices for the testing. When running in this mode certain tests will be skipped which depend on real block devices.
-d DIR	Create sparse files for VDEVs in the DIR directory. By default these files are created under /var/tmp/.
-s SIZE	Use VDEVs of SIZE (default: 2G)
-r RUNFILE	Run tests in RUNFILE (default: linux.run)

The ZFS Test Suite allows the user to specify a subset of the tests via a runfile. The format of the runfile is explained in test-runner(1), and the files that zfs-tests.sh uses are available for reference under /usr/share/zfs/runfiles. To specify a custom runfile, use the -r option:

\$ /usr/share/zfs/zfs-tests.sh -r my_tests.run

5.3 Test Results

While the ZFS Test Suite is running, one informational line is printed at the end of each test, and a results summary is printed at the end of the run. The results summary includes the location of the complete logs, which is logged in the form /var/tmp/test_results/[ISO 8601 date]. A normal test run launched with the zfs-tests.sh wrapper script will look something like this:

\$ /usr/share/zfs/zfs-tests.sh -v -d /mnt

Configuration Runfile: /usr/share/zfs/runfiles/linux.run STF_TOOL/ /usr/share/zfs/test-runner STF_SUITE: /usr/share/zfs/zfs-tests FILEDIR: /r FILES: /mnt/file-vdev0 /mnt/file-vdev1 /mnt/file-vdev2 LOOPBACKS: /dev/loo /dev/loop1 /dev/loop2 DISKS: loop0 loop1 loop2 NUM_DISKS: 3 FILESIZE: 2G 1 pool(s): rpool	mnt op0		
<pre>/usr/share/zfs/test-runner/bin/test-runner.py -c /usr/share/zfs/runfiles/linux.run -i /usr/share/zfs/zfs-tests Test: /tests/functional/acl/posix/setup (run as root) [00:00] [PASS]470 additional tests Test:/tests/functional/zvol/zvol_cli/cleanup (run as root) [00:00] [PASS]</pre>			
Results Summary PASS 472			
Running Time: 00:45:09 Percent passed: 100.0% Log directory: /var/tmp/test_results/20160316T181651			

5.4 ZTest/zloop Verification Tests

Ztest and zloop have been modified to test new functionality related to ABD, Allocation Classes and dRAID. When creating configurations, zloop and ztest will randomly opt for creating dRAID pools and opt to turn allocation classes on for those pools. In addition randomly through the tests it will flip linear vs scatter gather allocation on and off for ABD. The Allocation classes and dRAID functionality can be specified through a new set of command line options to both Ztest and Zloop.

Parameter	Default	Description
-K <kind></kind>	random	raidz draid random
-D <number></number>	4	Data drives per redundancy group
-G <number></number>	2	Number of redundancy groups
-S <number></number>	1	Distributedspare drives
-R <number></number>	1	RAID group parity
-s <number></number>	128M	Size of each leaf disk
Example:		
ztest-VVV -K draid-D 4 -G 3 -S 1 -R 1 -s 256m		

Table 5-1. zTest dRAID Options

Appendix A. Usage Examples

A.1 Usage Examples of dRAID for ZFS

A.1.1 Arbitrary Pool Configuration

dRAID supports all RAIDz parity levels. The new "draidcfg" tool is currently required to find the best set of random base permutations for the specified array configuration.

The dRAID pool configuration starts with a new command, "draidcfg," to find the best set of random permutations for the specified input parameters. The output from the draidcfg tool is a configuration file that 'zpool create' uses when creating the dRAID. The list of base permutations in the configuration file will be stored in the ZFS disk labels during zpool creation.

In this example, a triple-parity dRAID is created from 80 drives with seven 8+3 redundancy groups and three distributed spares.

```
# draidcfg -n 80 -d 8 -p 3 -s 3 80.nvl
Worst ( 7 x 11 + 3) x 5120: 0.998
Seed chosen: b79e65a91d440fc
```

The output from the draidcfg tool indicates the resulting configuration and the random seed that gave the best distribution of the parity groups and distributed spares. The output file holds the list of base permutations.

The following shows the first three base permutations contained in the 80.nvl file created above. The complete file listing is available in Appendix B.3.

```
# draidcfg -r 80.nvl
dRAID3 vdev of 80 child drives: 7 x (8 data + 3 parity) and 3 distributed
spare
Using 64 base permutations
23,54,38,76,61,14,34,48, 9,31,52,10, 3,41,46,70, 1,
6,59,47,28,32,29,49,30,22,27,11,44,20,56, 5,74,
8,50,15,62,66,33,67,16,65,36,71,75,18,68,21,69,26,64,60,55,42,43,63,35,37,24,
7,17,45, 0, 2,58,78,57,13,12,72,73, 4,19,25,51,79,39,53,77,40,
41,54,75,48, 2,57,36, 8,76,44, 5, 3,22,30,61,69,47,28,13, 0,
6,71,34,55,33,46,70,79,66,45,27,74,18,25,60,72,11,50,68, 1,53,32,19,64,40,51,
4,31,17,62,42,39,26,56, 7,16,24,12,38,15,78,35,37,67,
9,23,20,49,10,43,14,59,77,29,63,73,58,52,21,65,
14,65,43, 9,16,53,46,69,17,40,20, 3,47,70,28,39,54, 5,12,24,78,
2,49,61,11,51,75,79,41,50,73,34,18,21,25,52,44,22,32,77, 8,59,15, 7,74,66,
0,71,45,56, 4,36,58,23,68, 6,67,42,29,64,26,33,72,10,37,13,
1,76,60,38,48,31,63,27,35,62,55,19,30,57,
```

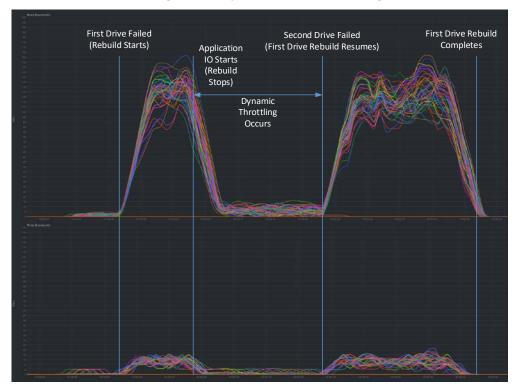
The command line syntax for creating the dRAID pool is similar to that for creating a RAIDz pool, with the addition of the draidcfg filename before listing the drives to be used in the pool.

zpool create -f -o ashift=12 -o cachefile=none -o segregate_special=on -0
recordsize=16MB MS09 draid3 cfg=/root/80.nvl sdb sdd sde sdg sdh sdi sdk sdl

sdm sdo sdp sdq sds sdt sdu sdw sdx sdy sdz sdab sdac sdad sdae sdc sdf sdj sdn sdr sdv sdaa sdaf sdag sdah sdai sdaj sdak sdal sdam sdan sdao sdap sdaq sdar sdas sdat sdau sdav sdaw sdax sday sdaz sdba sdbb sdbc sdbd sdbe sdbf sdbg sdbh sdbi sdbj sdbk sdbl sdbm sdbn sdbo sdbp sdbq sdbr sdbs sdbt sdbu sdbv sdbw sdbx sdby sdbz sdca sdcb sdcd

Zpool status for this pool lists all 80 drives contained in the dRAID and the three distributed spare VDEVs. The beginning and end of the listing are shown in the following table. The complete listing is available in Appendix B.4.

```
# zpool status
pool: MS09
state: ONLINE
scan: none requested
config:
NAME STATE READ WRITE CKSUM
MS09 ONLINE 0 0 0
 draid3-0 ONLINE 0 0 0
      sdb ONLINE 0 0 0
       sdd ONLINE 0 0 0
      sde ONLINE 0 0 0
       sdca ONLINE 0 0 0
       sdcb ONLINE 0 0 0
       sdcd ONLINE 0 0 0
 spares
       $draid3-0-s0 AVAIL
       $draid3-0-s1 AVAIL
       $draid3-0-s2 AVAIL
errors: No known data errors
```


A.1.2 Dynamic Rebuild Throttling

The rebuild process observes and responds to changes in application I/O and pool redundancy level, then throttles itself accordingly. This example shows that the rebuild process :

- o slowed down to give more I/O resources to the application
- sped up when the pool lost all redundancy critical mode (2 drives failed on dRAID2) and reached a critical state.

For this test we used a 43 drive Lustre OST. The results of the test are displayed with netdump (Figure 5-1). The upper graph shows read throughput in MB/s of all 43 individual drives. The lower graph shows the write throughput. The Y axis is throughput in MB/s, and the X axis is wallclock time, moving from right to left (older times are on the left).

Figure 5-1. Dynamic Rebuild Throttling

To initiate the test, one drive is taken offline and then started the rebuild by manually replacing the offline drive with a distributed spare.

```
# zpool offline ssu_lost0 sde
# zpool replace ssu_lost0 sde '$draid2-0-s0'
```

With no application I/O, the rebuild proceeded at full speed. The md5sum application was then run to generate I/O by reading a list of files from the file system.

md5sum /ssu_lost0/*.iso

As seen on the netdump plot, the rebuild process throttled itself as soon as the application i/O started. Both reads and writes dropped as the drives were busy switching between the two i/O streams from the application and the rebuild. Since this application is not I/O intensive and only did read I/Os, the write I/Os indicate the rebuild is proceeding slowly in the background. The application IO kept the file system busy enough to demonstrate the rebuild throttling mechanism

When another drive is taken offline before the first rebuild completes, the pool reaches a critical state since redundancy of the dRAID2 array has been lost and the rebuild throughput resumes to full speed immediately.

zpool offline ssu_lost0 sdk

When the rebuild completes, the zpool status shows that drive *sde* has been replaced by *\$draid2-0-s0*, which is now *INUSE*.

```
# zpool status
NAME STATE READ WRITE CKSUM
ssu_lost0 DEGRADED 0 0 0
draid2-0 DEGRADED 0 0 0
  sdb ONLINE 0 0 0
  sdd ONLINE 0 0 0
  spare-2 DEGRADED 0 0 0
  sde OFFLINE 0 0 0
  $draid2-0-s0 ONLINE 0 0 0
 sdq ONLINE 0 0 0
  sdh ONLINE 0 0 0
  sdi ONLINE 0 0 0
  sdk OFFLINE 0 0 0
. . . . . .
spares
 $draid2-0-s0 INUSE currently in use
 $draid2-0-s1 AVAIL
$draid2-0-s2 AVAIL
```

A.1.3 Rebuild Stop and Resume

Rebuild progress is periodically persisted so that if the rebuild process t is interrupted, the rebuild will be able to resume again from where progress was last saved, rather than restarting from the beginning.

In the previous example, two drives were taken offline (*sde* and *sdk*) and rebuilt *sde* onto *\$draid2-0-s0*. For this example, the rebuild of *sdk* was begun onto *\$draid2-0-s1*. The rebuild was then interrupted by exporting the pool.

```
# zpool replace ssu_lost0 sdk '$draid2-0-s1'
# zpool export ssu_lost0
```

The Linux dmesg log is used to view the debug messages from the rebuild process showing that rebuild was interrupted at metaslab 31.

```
[265158.886650] Scanning 4 segments for MS 30
[265158.892179] MS (30 at 8053063680K) segment: 720K + 80K
[265158.898894] MS (30 at 8053063680K) segment: 1920K + 80K
[265158.905767] MS (30 at 8053063680K) segment: 2080K + 80K
[265158.912586] MS (30 at 8053063680K) segment: 2880K + 80K
[265158.919333] Completed rebuilding metaslab 30
[265158.924989] All metaslabs [0, 29) fully rebuilt.
[265158.931215] Scanning 4 segments for MS 31
[265158.936432] MS (31 at 8321499160K) segment: 160K + 81920K
```


[265158.943346] MS (31 at 8321499160K) segment: 98280K + 101785600K [265160.549318] Completed rebuilding metaslab 29 [265160.555119] All metaslabs [0, 31) fully rebuilt. [265163.080670] Aborted rebuilding metaslab 31

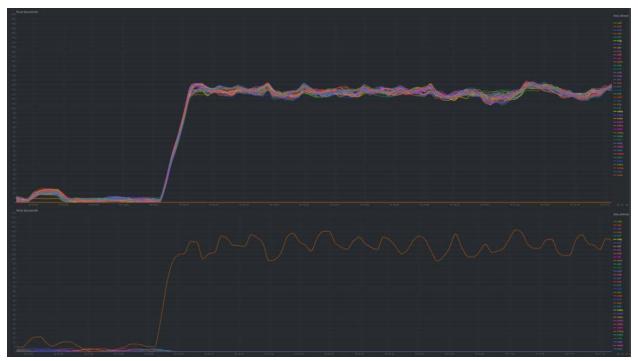
Note that the rebuild progress shown in the debug message log represents the saved status in-memory. The on-disk persisted progress usually lags behind the saved in-memory state by a number of metaslabs. As a result, the rebuild is expected to resume metaslab 31 or earlier.

When the pool is imported, rebuild resumed from the progress persisted to disk. The following debug messages show that the rebuild started from metaslab 29.

```
[265196.221793] Restarting rebuild at metaslab 29
[265197.190622] Scanning 36 segments for MS 29
[265197.195950] MS (29 at 7784628240K) segment: 0K + 229120K
[265197.208742] MS (29 at 7784628240K) segment: 229360K + 491480K
[265197.220629] MS (29 at 7784628240K) segment: 720880K + 264320K
[265197.227520] MS (29 at 7784628240K) segment: 985360K + 106320K
[265197.234404] MS (29 at 7784628240K) segment: 1091760K + 49960K
[265197.241346] MS (29 at 7784628240K) segment: 1141800K + 37960K
[265197.248362] MS (29 at 7784628240K) segment: 1179840K + 37200K
```

After the rebuild is completed, both distributed spares are now INUSE:

```
# zpool status
NAME STATE READ WRITE CKSUM
ssu_lost0 DEGRADED 0 0 0
draid2-0 DEGRADED 0 0 0
  sdb ONLINE 0 0 0
  sdd ONLINE 0 0 0
  spare-2 DEGRADED 0 0 0
  sde OFFLINE 0 0 0
  $draid2-0-s0 ONLINE 0 0 0
  sdq ONLINE 0 0 0
  sdh ONLINE 0 0 0
  sdi ONLINE 0 0 0
  spare-6 DEGRADED 0 0 0
  sdk OFFLINE 0 0 0
  $draid2-0-s1 ONLINE 0 0 0
  sdl ONLINE 0 0 0
  sdm ONLINE 0 0 0
. . . . . .
 spares
  $draid2-0-s0 INUSE currently in use
  $draid2-0-s1 INUSE currently in use
  $draid2-0-s2 AVAIL
```



A.1.4 Rebalance

In this example, the failed sde drive is replaced with the sdas drive to make the *\$draid2-0-s0* spare available again:

zpool replace -f ssu_lost0 sde sdas

The rebalance process uses the traditional ZFS resilver mechanism. Although it is essentially reconstructing the same lost redundancy as the previous rebuild, rebalance is much slower as it has to traverse the block pointer tree and write to a single spare drive. As shown below (Figure 5-2), only the replacement drive (sdas) does write IO, while during a sequential rebuild all surviving drives share the write workload (Figure 5-1).

After rebalance is completed, zpool status reports the corresponding distributed spare (*\$draid2-0-s0*) as being available (AVAIL).

zpool status
NAME STATE READ WRITE CKSUM
ssu_lost0 DEGRADED 0 0 0
draid2-0 DEGRADED 0 0 0
sdb ONLINE 0 0 0
sdd ONLINE 0 0 0


```
sdas ONLINE 0 0 0
sdg ONLINE 0 0 0
sdh ONLINE 0 0 0
sdi ONLINE 0 0 0
spare-6 DEGRADED 0 0 0
sdk OFFLINE 0 0 0
$draid2-0-s1 ONLINE 0 0 0
sdl ONLINE 0 0 0
.....
spares
$draid2-0-s0 AVAIL
$draid2-0-s1 INUSE currently in use
$draid2-0-s2 AVAIL
```

A.2 Usage Examples of Metadata Isolation with Lustre* and dRAID

These examples demonstrate the aspects of different allocation class configurations using zpool(8), zdb(8) and kstat.

A.2.1 Hybrid Metadata/Smallblock Isolation with dRAID VDEVs

This example compares two dRAID zpools:

- ssu_1ost1 had VDEV segregation enabled to create a hybrid-mirror dRAID. This dRAID VDEV set aside a portion of its allocation areas (metaslabs) to host metadata and small blocks. The remaining areas were used for generic application data and are intended to stream larger 16MB block content.
- ssu_2ost0 had dRAID alone. In this configuration of dRAID, allocations were not differentiated by category. Each metaslab hosted data as it arrived, which could be any mixture of small or large data and ZFS metadata.

Both dRAID pools had 43 drives in four 8+2 parity groups and 3 spares. Note that the zpool status for both pools shows the three virtual spares "\$draid-xx", but otherwise there is nothing to indicate that ssu_1ost1 also had a hybrid mirror for the special allocation class.

dRAID with VDE	V segrega	ation ena	bled	:	dRAID with no r	metadata	isolation	:	
# zpool status					# zpool status				
pool: ssu_lost	1				pool: ssu_2ost	:0			
state: ONLINE					state: ONLINE				
scan: none requ	uested				scan: none req	quested			
config:					config:				
-					-				
NAME	STATE	READ WF	RITE C	CKSUM	NAME	STATE	READ WI	RITE C	CKSUM
ssu_lost1	ONLINE	0	0	0	ssu_2ost0	ONLINE	0	0	0
draid2-0	ONLINE	0	0	0	draid2-0	ONLINE	0	0	0
mpathfn	ONLINE	0	0	0	mpathdd	ONLINE	0	0	0
mpathfa	ONLINE	0	0	0	mpathfa	ONLINE	0	0	0
mpathcx	ONLINE	0	0	0	mpathcx	ONLINE	0	0	0
mpathbs	ONLINE	0	0	0	mpathbs	ONLINE	0	0	0
mpathan	ONLINE	0	0	0	mpathan	ONLINE	0	0	0
mpathu	ONLINE	0	0	0	mpathu	ONLINE	0	0	0
mpatheu	ONLINE	0	0	0	mpatheu	ONLINE	0	0	0
mpathdp	ONLINE	0	0	0	mpathdp	ONLINE	0	0	0
mpathck	ONLINE	0	0	0	mpathck	ONLINE	0	0	0
mpathbf	ONLINE	0	0	0	mpathbf	ONLINE	0	0	0
mpathaa	ONLINE	0	0	0	mpathaa	ONLINE	0	0	0
mpathh	ONLINE	0	0	0	mpathh	ONLINE	0	0	0
mpatheh	ONLINE	0	0	0	mpathfm	ONLINE	0	0	0
mpathdc	ONLINE	0	0	0	mpatheh	ONLINE	0	0	0
mpathfm	ONLINE	0	0	0	mpathdc	ONLINE	0	0	0
mpathaz	ONLINE	0	0	0	mpathaz	ONLINE	0	0	0
-	ONLINE	0	0	0	-	ONLINE	0	0	0
mpathcw	ONLINE	0	0	0	mpathcw	ONLINE	0	0	0
mpathbr		0	-		mpathbr			0	0
mpatham	ONLINE	0	0	0	mpatham	ONLINE	0	0	0
mpatht	ONLINE	0	0	0	mpatht	ONLINE ONLINE	0	0	0
mpathdd	ONLINE	0	0		mpathet		0	0	0
mpathdo	ONLINE	0	0	0	mpathdo	ONLINE		0	0
mpathcj	ONLINE	0	0	0	mpathcj	ONLINE	0	0	0
mpathbe	ONLINE		-	0	mpathbe	ONLINE	0	0	0
mpathg	ONLINE	0	0	0	mpathg	ONLINE	0	-	-
mpathfl	ONLINE	0	0	0	mpathfl	ONLINE	0	0	0
mpatheg	ONLINE	0	0	0	mpatheg	ONLINE	0	0	0
mpathdb	ONLINE	0	0	0	mpathdb	ONLINE	0	0	0
mpathay	ONLINE	0	0	0	mpathay	ONLINE	0	0	0
mpathev	ONLINE	0	0	0	mpathcv	ONLINE	0	0	0
mpathbq	ONLINE	0	0	0	mpathbq	ONLINE	0	0	0
mpathal	ONLINE	0	0	0	mpathal	ONLINE	0	0	0
mpaths	ONLINE	0	0	0	mpaths	ONLINE	0	0	0
mpathfx	ONLINE	0	0	0	mpathfx	ONLINE	0	0	0
mpathes	ONLINE	0	0	0	mpathes	ONLINE	0	0	0
mpathdn	ONLINE	0	0	0	mpathdn	ONLINE	0	0	0
mpathci	ONLINE	0	0	0	mpathci	ONLINE	0	0	0
mpathbd	ONLINE	0	0	0	mpathbd	ONLINE	0	0	0
mpathf	ONLINE	0	0	0	mpathfk	ONLINE	0	0	0
mpathfk	ONLINE	0	0	0	mpathef	ONLINE	0	0	0
mpathef	ONLINE	0	0	0	mpathda	ONLINE	0	0	0
mpathda	ONLINE	0	0	0	mpathax	ONLINE	0	0	0
mpathax	ONLINE	0	0	0	mpathei	ONLINE	0	0	0
spares					spares				
\$draid2-0-s0	AVAIL				\$draid2-0-s0	AVAIL			

\$draid2-0-s1 AVAIL	\$draid2-0-s1 AVAIL
\$draid2-0-s2 AVAIL	\$draid2-0-s2 AVAIL
errors: No known data errors	errors: No known data errors

The allocation data for the dRAID with segregation enabled can be seen with the ' $_{2pool}$ list -C'.

The Special Class used in these examples comes from enabling segregation. For dRAID, this is an automatic opt-in as it makes sense to join the two features. This opt-in can further be observed by examining the following pool properties using 'zpool get'. These properties are automatically set with dRAID and are read-only.

# zpool ge	t feature@allocation_classes	,segregate_special,smallblkc	ceiling
NAME	PROPERTY	VALUE	SOURCE
ssu_lost1	feature@allocation_classes	active	local
ssu_lost1	segregate_special	on	local

Using the ZFS kstat framework, one can track the allocations occurring in each of the pool allocation classes while the file system is running.

```
cat /proc/spl/kstat/zfs/alloc class stats
name
                               type data
                               4 61325031915520
normal_allocated
normal_highest_allocated
                              4
                                   61325037486080
special_allocated
                              4
                                  233487310848
special highest allocated
                              4
                                   233536917504
slog_allocated
                               4
                                   0
slog_highest_allocated
                               4
                                   0
```

A.2.2 Observing Metaslab Regions

Using the zdb(8) tool, one can observe the underlying metaslabs in a zpool. With VDEV segregation enabled, ZFS will set aside a portion (20% by default) of these regions to service small blocks and metadata. The remaining regions are used for generic application data and large streaming I/O.

```
The 'zdb -m' command provides copious output. The zpools created for this
demonstration each had 290 metaslabs. The listing for a pool with dRAID alone
(ssu_2ost0) is shown in Appendix B.1. A fragment of this listing is below
(the size column has been deleted to make the data
# zdb -m ssu_2ost0
Metaslabs:
vdev 0
```


metaslabs	291	offset		spacemap		free		
metaslab	0	offset	0	spacemap	114	free	7.36M	
metaslab	1	offset	4000006000	spacemap	113	free	1.64G	
metaslab	2	offset	8000002000	spacemap	112	free	861M	
metaslab	3	offset	c000008000	spacemap	123	free	1.04G	
metaslab	4	offset	10000004000	spacemap	122	free	1.07G	

The listing for the dRAID pool segregation enabled is show in Appendix B.2. With segregation enabled, the listing now includes an additional column for class. There are three entries possible :

- 'special' means the metaslab is assigned to the special allocation class. This metaslab is part of a mirrored VDEV that contains ZFS metadata and/or small block data.
- 'normal' means the metaslab is assigned to the normal class. This metaslab is part of the dRAID VDEV and contains large block application data.
- '----' means the metaslab is unassigned. It can be assigned to the 'special' or 'normal' class as soon as ZFS needs an allocation for that class.

# zdb -m ssu_ Metaslabs:	lost1							
vdev	0	segrega	a+ 0					
metaslabs		offset	ice	spacemap		free		class
metaslab	0	offset	0	spacemap	115	free	122G	special
metaslab	1	offset	4000000000	spacemap	114	free	208G	special
metaslab	2	offset	8000001000	spacemap	113	free	221G	special
metaslab	3	offset	c000001000	spacemap	4	free	256G	special
metaslab	4	offset	1000002000	spacemap	3	free	256G	special
metaslab	5	offset	14000000000	spacemap	2	free	256G	special
metaslab	б	offset	18000000000	spacemap	7	free	256G	special
metaslab	7	offset	1c00001000	spacemap	6	free	256G	special
metaslab	8	offset	2000001000	spacemap	5	free	256G	special
metaslab	9	offset	24000002000	spacemap	0	free	256G	
metaslab	10	offset	28000000000	spacemap	0	free	256G	
metaslab	11	offset	2c000000000	spacemap	0	free	256G	
metaslab	12	offset	3000001000	spacemap	0	free	256G	
metaslab	13	offset	34000001000	spacemap	0	free	256G	
metaslab	58	offset	e8000008000	spacemap	123	free	7.70G	normal
metaslab	59	offset	ec000004000	spacemap	125	free	1.43G	normal
metaslab	60	offset	£0000000000	spacemap	124	free	1.58G	normal
metaslab	61	offset	£4000006000	spacemap	126	free	1.27G	normal
metaslab	62	offset	£8000002000	spacemap	127	free	1.66G	normal
metaslab	63	offset	fc000008000	spacemap	128	free	2.05G	normal
metaslab	64	offset	10000004000	spacemap	129	free	2.23G	normal
metaslab	65	offset	10400000000	spacemap	130	free	2.01G	normal
metaslab	66	offset	10800006000	spacemap	131	free	1.59G	normal
metaslab	284	offset	47000004000	spacemap	349	free	12.7G	normal
metaslab	285	offset	47400000000	spacemap	350	free	21.9G	normal
metaslab	286	offset	478000006000	spacemap	351	free	19.0G	normal
metaslab	287	offset	47c000002000	spacemap	352	free	1.16G	normal
metaslab	288	offset	48000008000	spacemap	353	free	912M	normal
metaslab	289	offset	48400004000	spacemap	354	free	902M	normal
metaslab	290	offset	488000000000	spacemap	355	free	1.35G	normal

A.2.3 Observing Free Space Fragmentation

We can observe the free space fragmentation details of each metaslab by running ' $_{zdb}$ -mm' to dump histograms of data allocations in each metaslab. The free space fragmentation affects the new data block allocations and the resulting I/O performance of new files.

In the samples below, the fragmentation histograms are the free segments for a power-of-two size. So 2^13 represents 8KB free chunks and 2^24 represents 16MB free chunks. After an aging run, there typically are no free regions in the non-segregated pool large enough to satisfy a 16MB block on the pool with segregation disabled. In that case, ZFS would have to stitch together a set of blocks to satisfy a 16MB block request.

As expected, the pool with large and small block isolation provided by segregation has different fragmentation characteristics. For a metaslab that is servicing small blocks and metadata, it is acceptable to have lots of smaller blocks that are free since later small allocations can fill in those holes. For a metaslab that is servicing larger blocks, it would ideally have plenty of larger contiguous ares from which to draw from. In the segregated pool, there are still 106+2*9+4*1=128 16MB chunks free in the normal class.

metaslab 34 offset	88000004000 size 3fffffc000 spacemap 153 free 21.1G
On-disk histogram:	fragmentation 21
15:	31492 ************************************
16:	9869 *******
17:	2356 ***
18:	1665 ***
19:	2275 ***
20:	3543 ****
21:	2593 ****
22:	1097 **

As expected, the pool with large and small block isolation provided by segregation has different fragmentation characteristics. For a metaslab that is servicing small blocks and metadata (special class), it is acceptable to have lots of smaller blocks that are free since later small allocations can fill in those holes.

metaslab 2 offset	8000001000) size 3ffffff000 spacemap 113 free 221G special
On-disk histogram:		fragmentation 8
	448909 **	****
14:	161708 **	******
15:	91420 **	*****
16:	29406 **	**
17:	13000 **	*
18:	6912 *	
19:	5800 *	
20:	2823 *	
21:	2205 *	
22:	1317 *	
23:	819 *	
24:	431 *	
25:	211 *	
26:	163 *	
27:	135 *	
28:	2 *	
29:	0	
30:	0	
31:	0	
32:	0	
33:	0	
34:	0	
35:	0	
36:	1 *	

For a metaslab that is servicing larger blocks (normal class), it would ideally have plenty of larger contiguous ares from which to draw from. In the segregated pool, there are still 106+2*9+4*1=128 16MB chunks free in the normal class.

```
metaslab 77 offset 134000002000 size 3fffffe000 spacemap 142 free 19.9G normal
On-disk histogram:
                        fragmentation 13
            16: 285 ***
                484 ****
            17:
            18:
                 810 *******
            19: 1449 *************
             21: 1997 ****************
             22: 839 ******
                 107 *
             23:
                 106 *
             24:
                  9 *
             25:
                   1 *
             26:
```

A.2.4 Observing Allocations by Category

The 'zdb -mm' command also includes an Allocation Summary section that shows what allocations were made by category. This can be used to confirm that the metaslab regions are

allocating from the expected class. Both examples below are from a dump of a zpool with segregation enabled.

For a normal class metaslab, the Allocation Summary shows that all of the blocks allocated to the metaslab are in the generic category.

For a special class metaslab, the blocks allocated belong to the metadata and small block categories.

```
metaslab0 offset0 size 400000000 spacemap 115 free 122G specialAllocation Summary:134G allocatedmetadata:62.1%smallblks:37.9%dedup:0.0%generic:0.0%
```

A normal class allocation may include metadata and small block categories as well as generic. A special class allocation will only hold metadata and small blocks. The special class cannot hold a generic category allocation.

A.3 Usage Examples of End-to-End 16MB File Block I/Os

The example consists of two parts: End-to-End Streaming, to show the transfer of 16MB from Lustre clients to the ZFS, and Fragmentation Improvements, to show the improved performance with Metadata Isolation. For both examples, we used a cluster that had 8 Lustre clients and 4 Lustre OSSs. Each OSS had a single 43 drive dRAID2 OS.

A.3.1 Configuring the file system for 16MB I/Os

Each file system component along the I/O path must be configured to enable 16MB I/O. Starting from the Lustre server, 16MB I/Os are set first at ZFS, then Linux, then Lustre OSS, and then, finally, the Lustre client.

A.3.1.1 ZFS on the Lustre OSS

On each Lustre OSS, set ZFS to accept and use 16MB I/Os with the following steps:

1. Set "zfs_max_recordsize" to 16MB (16777216).

echo "16777216" > /sys/module/zfs/parameters/zfs_max_recordsize

2. Create the zpool while specifying a 16MB record size using the "recordsize" option.

zpool create -o ashift=12 -o segregate_special=on -o cachefile=none -O
recordsize=16MB ssu_lost1 draid2 cfg=test_2_8_3_43_draidcfg.nvl mpathfn
mpathfa mpathcx mpathbs mpathan mpathu mpatheu mpathdp mpathck mpathbf
mpathaa mpathh mpatheh mpathdc mpathfm mpathaz mpathcw mpathbr mpatham mpath
mpathdd mpathdo mpathcj mpathbe mpathg mpathfl mpatheg mpathdb mpathay
mpathcv mpathbq mpathal mpaths mpathfx mpathes mpathdn mpathci mpathbd mpathf
mpathfk mpathef mpathda mpathax

The "-o ashift=12" option is only necessary to force 4KB sectors on hard drives that pretend to have 512-byte sectors for backward compatibility.

3. Enable the ZFS feature@large_blocks flag for the zpool. Verify the feature with the zpool get all command.

```
# zpool feature@large_blocks=enabled ssu_lost1
# zpool get all ssu_lost1 |grep large_blocks
ssu_lost1 feature@large_blocks active local
```

A.3.1.2 Linux on the Lustre OSS

The Linux block I/O layer for each disk drive on the Lustre OSS must be configured to handle 2MB I/Os. This is done by setting the max_sectors_kb parameter to 4096 (512B/sector * 4096 sectors = 2MB) and the scheduler to noop. The following script was run before the example started:

```
for i in $(find /sys/devices -print |grep max_sectors_kb |grep -v ata)
do
    echo 4096 > $i
done
for x in $(find /sys/devices -print |grep scheduler |grep -v ata)
do
    echo noop > $x
done
```

A.3.2 Lustre OSS

The Lustre OSS itself is configured to use 16MB by using the Lustre control interface, lctl, to set the obdfilter read and write size (brw_size) to 16:

```
# lctl set_param obdfilter.*.brw_size=16
```


obdfilter.nlsdraid-OST0001.brw_size=16

A.3.2.1 Lustre Client

The RPC size used by the Lustre client is controlled by the max_pages_per_rpc parameter. Each page is 4096 bytes. By default, Lustre sets max_pages_per_rpc to 256 to use 1MB RPCs (256*4096=1048576). Starting in Lustre 2.9, it is possible to raise the parameter to 4096 to use 16MB RPCs (4096*4096 = 16MB). To make this change, we use pdsh to run lctl on each compute node to set the RPC size on the Lustre client for each OSS connection.

```
# pdsh -w node0[1-8] "/usr/sbin/lctl set_param osc.*.max_pages_per_rpc=16M"
node01: osc.nlsdraid-OST0000-osc-ffff8820228e3000.max_pages_per_rpc=4096
node01: osc.nlsdraid-OST0001-osc-ffff8820228e3000.max_pages_per_rpc=4096
node01: osc.nlsdraid-OST0002-osc-ffff8820228e3000.max_pages_per_rpc=4096
...
node01: osc.nlsdraid-OST0000-osc-ffff8816686ea000.max_pages_per_rpc=4096
node04: osc.nlsdraid-OST0001-osc-ffff8816686ea000.max_pages_per_rpc=4096
node04: osc.nlsdraid-OST0002-osc-ffff8816686ea000.max_pages_per_rpc=4096
node04: osc.nlsdraid-OST0002-osc-ffff8816686ea000.max_pages_per_rpc=4096
node04: osc.nlsdraid-OST0002-osc-ffff8816686ea000.max_pages_per_rpc=4096
```

A.3.3 Prepping Lustre Counters

Lustre maintains a number of useful counters on the client and server to help evaluate the performance of different components of the file system. For the End-to-End 16MB demonstration, we used the "rpc_stats" structures on the client and "brw_stats" structure on the server. The scripts used during the demonstration are described below.

A.3.3.1 RPC Stats

RPC stats are kept on the Lustre client to show the distribution of RPCs issued by the client to the Lustre server. The rpc_stats variable on each client can be cleared before the test and the read after the test completes.

A.3.3.2 clear_rpc.sh

#!/bin/bash

The clear_rpc.sh script cleared the rpc_stats counter structure on all 8 clients on the cluster. This script is run before each performance test.

```
for host in node01 node02 node03 node04 node05 node06 node07 node08 do
```

echo "clear on \$host"

ssh \$host "/usr/sbin/lctl set_param osc.*.rpc_stats=0"
echo

done

When complete, the script shows that the counters have been zeroed:

```
# ./clear_rpc.sh
clear on node01
osc.nlsdraid-OST0000-osc-ffff8820228e3000.rpc_stats=0
osc.nlsdraid-OST0001-osc-ffff8820228e3000.rpc_stats=0
osc.nlsdraid-OST0002-osc-ffff8820228e3000.rpc_stats=0
```

A.3.3.3 show_rpc.sh

The show_rpc script displays the rpc_stats structure from each Lustre client.

```
#!/bin/bash
for host in node01 node02 node03 node04 node05 node06 node07 node08
do
    ssh $host "/bin/hostname; cat /proc/fs/lustre/osc/nlsdraid-OST000[1-
3]*/rpc_stats | grep -A14 'pages per' " |egrep --color=always '.*4096:.*|$'
echo
done
```

The output from this script is used to evaluate how the Lustre clients sent RPCs to the servers.

A.3.4 BRW Stats

The Lustre server maintains counters for the block I/O requests that it sends to the underlying Linux file system. The counters are cleared before a test, and then read afterwards.

A.3.4.1 clear_brw.sh

The cluster had 4 Lustre OSS. This script cleared the brw_stats structure on each server.

```
#!/bin/bash
for host in lustre1 lustre2 lustre3 lustre4
done
```


When complete, the script shows that the servers have been zeroed:

```
# ./clear_brw.sh
obdfilter.nlsdraid-OST0000.brw_stats=0
obdfilter.nlsdraid-OST0001.brw_stats=0
obdfilter.nlsdraid-OST0002.brw_stats=0
obdfilter.nlsdraid-OST0003.brw_stats=0
```

A.3.4.2 show_brw.sh

The show_brw script shows the block distribution sent to the underlying storage.

```
#!/bin/bash
for host in lustrel lustre2 lustre3 lustre4
do
    ssh $host "/bin/hostname; cat /proc/fs/lustre/osd-zfs/*/brw_stats|grep -A36
'size' " |egrep --color=always '.*16M.*|$'
    echo
done
```

The output from this script is shown in Section A.4.2.

A.4 End to End Streaming

IOR was used to generate 16MB I/O from the clients using file per process with a sequential workload.

```
# mpirun -wdir /mnt/lustre -np 8 -machinefile hosts /root/natasha-bin/ior -F
-i 1 -s 20480 -b 16m -t 16m
Command line used: /root/natasha-bin/ior -F -i 1 -s 20480 -b 16m -t 16m
Machine: Linux node01
Test 0 started: Tue Jun 20 14:37:07 2017
Summary:
   api
                      = POSIX
   test filename
                     = testFile
   access
                      = file-per-process
   ordering in a file = sequential offsets
   ordering inter file= no tasks offsets
    clients
                     = 8 (1 \text{ per node})
   repetitions
                      = 1
   xfersize
                      = 16 MiB
   blocksize
                      = 16 MiB
```


aggregate filesize = 2560 GiB

The IOR test was configured so that each of the four OSS received I/O from two different clients:

node01 \rightarrow testFile.00000000 on ost0
node02 \rightarrow testFile.00000001 on ost1
node03 \rightarrow testFile.00000002 on ost2
node04 \rightarrow testFile.00000003 on ost3
node05 \rightarrow testFile.00000004 on ost0
node05 \rightarrow testFile.00000005 on ost1
node07 \rightarrow testFile.00000006 on ost2
node08 \rightarrow testFile.00000007 on ost3

While the workload tests ran, a number of Linux tools were used to expose the I/O sizes at each step of the I/O flow, from the Lustre clients to the ZFS disk devices. These tools are summarized in Table 5-2 and show at what point each tool is used in the I/O flow.

	Metric		Tool			Run	on		Display
1	RPC Stats	Lctl get_pa	ram osc.*	.rpc_sta	its	Lustre C	lient	-	n of the RPC sizes and rom the client
2	BRW Stats	Lctl get_pa obdfilter.*		S		Lustre So (OST)	erver		ns of RPC sizes on each OST
3	ZFS iostats	Zpool iosta	t -r ost()		Lustre So (ZFS)	erver		request sizes in each Ied to disk
4	Disk Stats	visualized	with netc	lump		Lustre So (Linux)	erver	graphic di	splay of
т	est Tool		2		3		4	_	Zpools
	Lus Clie		Lustr Serve		ZFS dRAID	3 В	lock I/C		Data Metadata
	161	ИВ	16MB	16MB		2MB	2MB	Target	

Table 5-2. I/O Size Evaluation Tools

A.4.1 Lustre Client RPC stats

Before running the IOR test, the clear_rpc.sh script (section A.3.3.2) cleared the rcp_stats structure on each Lustre client and the clear_brw.sh script (section A.3.4.1) cleared the brw_stats structure on each Lustre OSS.

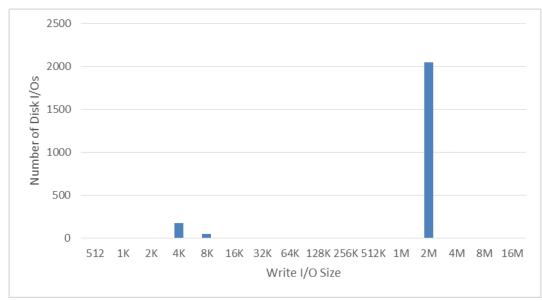
The show_rpc.sh script (section A.3.3.3) displayed the rpc_stats structure from each client. With 4KB sized pages, 4096 pages per RPC represent 16MB per RPC. All clients showed a result similar to the one below in which all RPCs sent during the IOR run work 16MB in size.

node01 ost0								
pages per rpc	rpcs	00	cum	00	rpcs	00	cum	
1:	0	0	0		0	0	0	
2:	0	0	0		0	0	0	
4:	0	0	0		0	0	0	
8:	0	0	0		0	0	0	
16:	0	0	0		0	0	0	
32:	0	0	0		0	0	0	
64:	0	0	0		0	0	0	
128:	0	0	0		0	0	0	
256:	0	0	0		0	0	0	
512:	0	0	0		0	0	0	
1024:	0	0	0		0	0	0	
208:	0	0	0		0	0	0	
4096:	0	0	0		3500	100	100	

A.4.2 Lustre Server BRW stats

We then verified that 16MB IO blocks were sent through the Lustre server with the show_brw.sh script (section A.3.4.2):

# ./show_brw.sh							
ssul_ossl							
disk I/O size	ios	% Cum	8	ios	00	cum %	
16M:	0	0 0		2048	100	100	
ssu1_oss2							
disk I/O size	ios	% Cum	8	ios	00	cum 🖇	
16M:	0	0 0		2048	100	100	
ssu2_oss1							
disk I/O size	ios	% cum	8	ios	o\o	cum %	
16M:	0	0 0		314290	100	100	
ssu2_oss2							
disk I/O size	ios	% cum	8	ios	00	cum %	
16M:	0	0 0		306408	100	100	



A.4.3 ZFS I/O Sizes

Using the 'zpool iostat' command, it is possible to see how the 16MB I/Os from Lustre are converted to disk I/Os:

\$ zpool iost	at -r										
ssu_2ost0	su_2ost0 sync_read				sync_write async_read				scrub		
req_size	ind	agg	ind	agg	ind	agg	ind	agg	ind	agg	
512	0	0	0	0	0	0	0	0	0	0	
lK	0	0	0	0	0	0	0	0	0	0	
2K	0	0	0	0	0	0	0	0	0	0	
4K	0	0	0	0	0	0	171	0	0	0	
8K	0	0	0	0	0	0	3	42	0	0	
16K	0	0	0	0	0	0	0	0	0	0	
32K	0	0	0	0	0	0	0	0	0	0	
64K	0	0	0	0	0	0	0	0	0	0	
128K	0	0	0	0	0	0	0	0	0	0	
256K	0	0	0	0	0	0	0	0	0	0	
512K	0	0	0	0	0	0	0	0	0	0	
1M	0	0	0	0	0	0	0	0	0	0	
2М	0	0	0	0	0	0	2.05K	0	0	0	
4M	0	0	0	0	0	0	0	0	0	0	
8M	0	0	0	0	0	0	0	0	0	0	
16M	0	0	0	0	0	0	0	0	0	0	

A plot of the output (Figure 5-3) clearly shows that the IOR test generated mostly 2MB write I/Os to disk.

Figure 5-3. Size Distribution of ZFS Write I/O

A.4.4 Linux Disk stats and Bandwidths

The Linux netdump utility was used to graphically display the I/O sizes and bandwidths for each disk during the IOR run. The plots show reads on top and writes on the bottom. Each line represents the data from a single drive. Time is scrolling right to left along the horizontal axis so that the oldest data are on the left of the screen. The time interval shown is at the transition from when IOR completes the writing phase of the test and begins reading the files just written.

The following figure (Figure 5-4.) shows the I/O size plot. The average write size from the 43 disks varies from 1000 KB to 1700 KB in size. Although the results above (section A.4.3) show that ZFS is sending 2MB I/Os to Linux, netdump reports the average Linux I/O size. Since ZFS writes a lot of metadata during commits, as the block pointer tree is updated at the end of each write transaction group, the average write size is expected to be less than 2MB. The read plot, however, consistently shows that Linux is reading 2000 KB from all disks.

Figure 5-4. Read/Write Disk Stats for Sequential Workload

The next figure (Figure 5-5) shows the write and read bandwidth during the same interval. The data show that all disks are writing 60-80 MB/s and reading 30-50 MB/s.

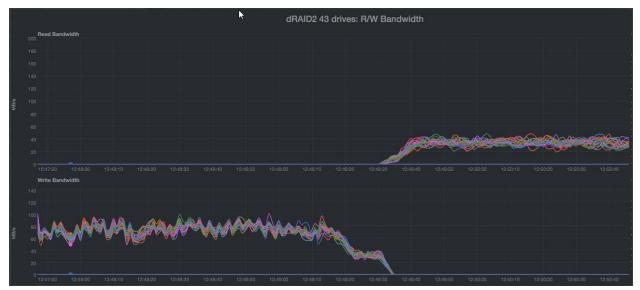


Figure 5-5. Write/Read Bandwidth for Sequential Workload

A.4.5 Linux disk stats for a random workload

The IOR test was repeated, using random file offsets for the 16MB I/Os to generate a random workload.

```
# mpirun -wdir /mnt/lustre -np 12 -machinefile hosts /root/natasha-bin/ior -z
-F -i 1 -s 10240 -b 16m -t 16m
IOR-3.0.1: MPI Coordinated Test of Parallel I/O
Began: Wed Jun 21 08:43:14 2017
Command line used: /root/natasha-bin/ior -z -F -i 1 -s 10240 -b 16m -t 16m
Machine: Linux node01
Test 0 started: Wed Jun 21 08:43:14 2017
Summary:
   api
                     = POSIX
   test filename
                      = testFile
                      = file-per-process
   access
   ordering in a file = random offsets
   ordering inter file= no tasks offsets
   clients
                      = 12 (2 per node)
   repetitions
                      = 1
   xfersize
                      = 16 MiB
   blocksize
                      = 16 MiB
```

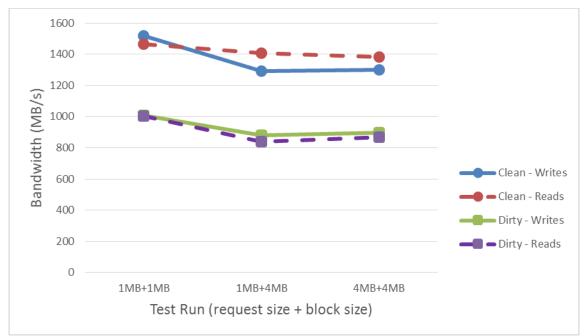

The impact of the unaligned I/O will be seen most clearly when the data is written to disk. The following diagram (Figure 5-6) shows the I/O size plots during IOR's transition from writes to reads. As above, read I/Os are consistently 2000 KB in size, as expected. Write I/Os, however, are more variable, showing a smaller size range (200-1600 KB) and greater differences between drives.



The bandwidth plot for the random workload (Figure 5-7) shows that, as above, the drives are writing and reading at fairly consistent rates, with no clear outliers. Nonetheless, performance

per drive of 40 MB/s for writes and 20 MB/s for reads is lower than with the sequential workload above.

A.5 Fragmentation Improvements


Initial testing of large 16MB I/O had shown the impact of file system fragmentation, which occurred naturally as the file system aged, on performance. The metadata isolation project grew out of these early experiments. To demonstrate the benefit of metadata isolation we compared pools with and without segregation and then showed how segregation improves performance as the file system becomes fragmented.

A.5.1 File System Fragmention

When ZFS on Linux enabled support 16MB blocks, our testing found that as on-disk fragmentation increased, performance on I/O benchmarks decreased. Our early testing used a python file-ager. An iozone benchmark would be run on a clean file system, then we would run a python-based file ager to fragment the file system. The initial tool would write a concurrent combination of large files with large blocks, many smaller files 1/16th of the large block size, and random sized files. The initial tests varied the I/O request size against the ZFS block size. The results clearly show the lower performance for the dirty file systems (Figure 5-8).

A.5.2 Performance Improvements with Segregated Metadata

Two pools were created, one without segregation (ssu_2ost0) and one with segregation enabled (ssu_1ost1). Both pools were fragmented using the procedure described in the previous section, which left each pool with over 90% of the storage space allocated. An immediate difference could be seen from the fragmentation metric that ZFS maintains for the pool: the zpool without fragmentation had a significantly higher fragmentation score than the zpool with segregation:

• ssu_2ost0, dRAID without segregation enabled:

#zpool lis	t								
NAME	SIZE	ALLOC	FREE	EXPANDSZ	FRAG	CAP	DEDUP	HEALTH	ALTROOT
ssu_2ost0	72.7T	69.6T	3.15T	-	24%	95%	1.00x	ONLINE	-

• ssu_1ost1, dRAID with segregation of special allocation class enabled:

#zpool lis	t								
NAME	SIZE	ALLOC	FREE	EXPANDSZ	FRAG	CAP	DEDUP	HEALTH	ALTROOT
ssu_lost1	72.7T	62.9T	9.9T	-	3%	92%	1.00x	ONLINE	-

Segregating the ZFS metadata and small block data to a separate group of metaslabs within the zpool keeps the rest of the dRAID available for efficient large block allocations. The fragmentation metric for each metaslab is available through the 'zdb -mm' command (Section A.2.3). The plot of the ZFS fragmentation metric (Figure 5-9) shows that without segregation,

the metaslabs for the plain dRAID are more fragmented than the metaslabs on a dRAID with segregation enabled.

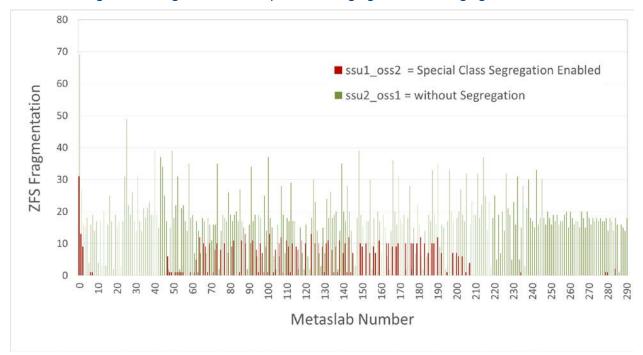


Figure 5-9. Fragmentation Comparison of Segregated and Unsegregated dRAIDs

The average ZFS fragmentation score is over 17 with many metaslabs peaking over 30. On the other hand, segregation of the metadata keeps the metslab fragmentation score below 10 (average <3). On the dRAID with the segregated VDEV, the first 20% of the metaslabs are assigned to the special class. This means that the metaslabs numbered 58 and higher (Figure 5-9) are all normal class and contain generic data larger than 32KB in size. Segregation simplifies block allocation to these metaslabs, reduces fragmentation, and improves performance.

We ran the following iozone test on the cluster using all 8 Lustre clients.

#iozone -t 8 -r 16m -i 0 -i 1 -s 256g

The test results provide aggregate throughput for all 8 nodes after writing, rewriting, reading and rereading to the Lustre servers. The results (Figure 5-10) show that without the special class enabled, performance on a fragmented file system is worse than on a file system with segregation enabled.

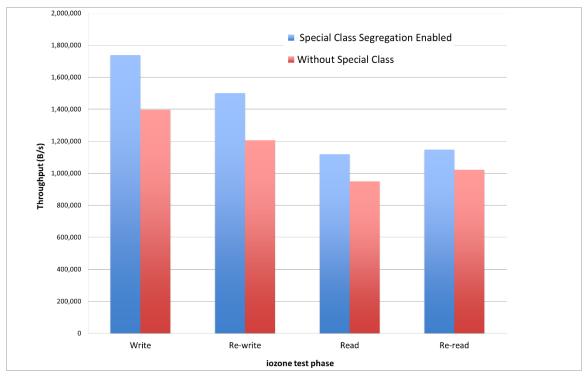


Figure 5-10. Performance Impact of Segregation on Fragmented File System

A.6 Examples of ZED Fault Handling using dRAID for ZFS

A.6.1 Multi-Fault Handling

This example focuses on the interaction of the Diagnosis Engine and Retire Agent with ZFS in the presence of multiple drive failures, which exercises the features described above in Section 3.

The examples show that while dRAID rebuild is in progress, the arrival of the second or third failure in the array would be saved within the Retire Agent until the current rebuild completed, upon which the Agent would retry the pending request.

To introduce the drive faults for the demonstration, we injected IO read errors using zinject to force ZED to fail the drives. The Diagnosis Engine receives these error events and once the number of faults received exceeds a failure rate threshold, the Engine will initiate a fault message. The Retire Agent then automatically begins to use the first of the dRAID spares to rebuid the failed drive.

A.6.1.1 dRAID Configuration

A triple parity dRAID was created on the cluster with a single parity group (7+3) and 3 distributed spares. We started with a clean, populated pool with all cache cleared:

```
pool: mfault
state: ONLINE
  scan: resilvered 368K in OhOmls with 0 errors on Tue Jun 27 20:11:10 2017
config:
     NAME
                      STATE
                                READ WRITE CKSUM
      mfault
                      ONLINE
                                    0
                                          0
                                                0
        draid3-0
                      ONLINE
                                    0
                                          0
                                                0
          sdb
                                    0
                                                0
                      ONLINE
                                          0
                                                0
          sdc
                      ONLINE
                                    0
                                          0
          sdd
                      ONLINE
                                    0
                                          0
                                                0
          sde
                      ONLINE
                                    0
                                          0
                                                0
          sdf
                      ONLINE
                                    0
                                          0
                                                0
                                    0
                                          0
                                                0
          sdg
                      ONLINE
                                    0
                                          0
                                                0
          sdh
                      ONLINE
          sdi
                                    0
                                          0
                                                0
                      ONLINE
                                    0
                                          0
                                                0
          sdj
                      ONLINE
                                    0
                                          0
                                                0
          sdk
                      ONLINE
                                    0
                                          0
          sdl
                                                0
                      ONLINE
          sdm
                      ONLINE
                                    0
                                          0
                                                0
      spares
        $draid3-0-s0 AVAIL
        $draid3-0-s1 AVAIL
        $draid3-0-s2 AVAIL
errors: No known data errors
```


A.6.1.2 First Failure

zinject() was used to send I/O read errors to drives sdb, sdg and sdm. When the Diagnosis Engine began receiving errors, the zed log showed that the Diagnosis Engine opened a failure case for each VDEV:

```
Diagnosis Engine: case opened (cc7e90a9-f96d-4937-ace2-54502acfc9ec)
Diagnosis Engine: opening case for vdev 13059866864003676862 due to
    'ereport.fs.zfs.io'
. . .
Diagnosis Engine: case opened (602adf2c-c4dc-4613-88de-de3442182e6d)
Diagnosis Engine: opening case for vdev 5296963598540981156 due to
    'ereport.fs.zfs.io'
. . .
Diagnosis Engine: case opened (ae95fc42-ccd1-4a03-924c-649ecda66de8)
Diagnosis Engine: opening case for vdev 4853321467358484743 due to
    'ereport.fs.zfs.io'
```

The Diagnosis Engine used each opened case to track the errors received for each VDEV. Eventually the first drive (sdb) accumulated enough errors that the Diagnosis Engine generated a fault event for the drive. The Retire Agent received the fault, which caused it to report the failed drive to ZFS, and then initiated the dRAID rebuild of the first distributed spare (\$draid3-0-s0).

```
Diagnosis Engine: solving fault 'fault.fs.zfs.vdev.io'
zed fault event:
      uuid: cc7e90a9-f96d-4937-ace2-54502acfc9ec
      class: fault.fs.zfs.vdev.io
     code: ZFS-8000-FD
     certainty: 100
     scheme: zfs
     pool: 1320611588736634121
      vdev: 13059866864003676862
Diagnosis Engine: case solved (cc7e90a9-f96d-4937-ace2-54502acfc9ec)
Diagnosis Engine: removing timer (0x7f12d000d720)
Retire Agent: zfs retire recv: 'list.suspect'
Retire Agent: matched vdev 13059866864003676862
Retire Agent: zpool_vdev_fault: vdev 13059866864003676862 on 'mfault'
Retire Agent: zpool_vdev_replace 'sdb' with spare '$draid3-0-s0'
Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'
```

The last log messages show that ZFS had faulted the drive and sent the event through the Diagnosis Engine to the Retire Agent.

Zpool status confirms that the first drive had been faulted and that the rebuild was in progress.

pool: mfault					
state: DEGRADED					
status: One or more devic	es are fau	lted :	in resp	ponse t	o persistent errors.
Sufficient replicas	s exist for	the p	pool to	o conti	nue functioning in a
degraded state.					
action: Replace the fault	ed device,	or us	se 'zpo	ool cle	ar' to mark the device
repaired.					
scan: rebuild in progre	ess since T	'ue Jui	n 27 20	0:03:41	2017
2.70M scanned out o	of 128G at	923K/s	s, 40h2	25m to	go
1.40M rebuilt, 0.00)% done				
config:					
NAME	STATE		WRITE	CKSUM	
mfault	DEGRADED	0	0	0	
draid3-0	DEGRADED				
spare-0	DEGRADED		-	0	
	FAULTED		0	0	too many errors
\$draid3-0-s0		0	-	-	(repairing)
sdc	ONLINE	0	0	0	
sdd	ONLINE	0	0	0	
sde	ONLINE	0	0	0	
sdf	ONLINE	0	0	0	
sdg	ONLINE	65	0	0	(repairing)
sdh	ONLINE	0	0	0	(repairing)
sdi	ONLINE	0	0	0	
sdj	ONLINE	0	0	0	
sdk	ONLINE	0	0	0	
sdl	ONLINE	0	0	0	
sdm	ONLINE	38	0	0	(repairing)
spares					
\$draid3-0-s0	INUSE	curre	ently :	in use	
\$draid3-0-s1	AVAIL				
	AVAIL				
errors: No known data err	rors				

A.6.1.3 Second Failure

While the first rebuild was proceeding, the zinject() continued to send I/O read failures to the other two drives (sdg, sdm). Eventually, the Diagnosis Engine faulted the second drive (sdg). The Retire Agent received the fault and forwarded the fault event to ZFS. The Agent then attempted to use the second distributed spare but detected that the zpool was busy with the first rebuild and saved the spare-in request. ZFS received the fault event from the Retire Agent, then sent a state change event, which both the Diagnosis Engine and Retire Agent received.

```
Diagnosis Engine: solving fault 'fault.fs.zfs.vdev.io'
zed fault event:
  uuid: 602adf2c-c4dc-4613-88de-de3442182e6d
  class: fault.fs.zfs.vdev.io
  code: ZFS-8000-FD
  certainty: 100
  scheme: zfs
  pool: 1320611588736634121
  vdev: 5296963598540981156
Diagnosis Engine: case solved (602adf2c-c4dc-4613-88de-de3442182e6d)
Diagnosis Engine: removing timer (0x7f12d0045880)
Retire Agent: zfs_retire_recv: 'list.suspect'
Retire Agent: matched vdev 5296963598540981156
Retire Agent: zpool vdev fault: vdev 5296963598540981156 on 'mfault'
Retire Agent: zpool_vdev_replace 'sdg' with spare '$draid3-0-s1'
Retire Agent: zpool_vdev_attach 'sdg' busy. Saving request.'
Retire Agent: Saved request pool_guid 1320611588736634121 vdev_guid
  5296963598540981156.
Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'
```

After the first rebuild completed, the Retire Agent received the rebuild_finish event, then replayed the retained spare request for the second distributed spare drive (\$draid3-0-s1).

```
Retire Agent: zfs_retire_recv: 'sysevent.fs.zfs.rebuild_finish'
Retire Agent: Replaying spare request pool_guid 1320611588736634121 vdev_guid
5296963598540981156.
Retire Agent: matched vdev 5296963598540981156
Retire Agent: zpool_vdev_replace 'sdg' with spare '$draid3-0-s1'
```

Initiation of this second dRAID rebuild could be seen in the zpool status.

pool: mfault


```
state: DEGRADED
status: One or more devices are faulted in response to persistent errors.
      Sufficient replicas exist for the pool to continue functioning in a
      degraded state.
action: Replace the faulted device, or use 'zpool clear' to mark the device
      repaired.
  scan: rebuild in progress since Tue Jun 27 20:05:43 2017
      11.6G scanned out of 128G at 1.29G/s, Ohlm to go
      762M rebuilt, 9.07% done
config:
      NAME
                          STATE
                                    READ WRITE CKSUM
      mfault
                                        0
                                              0
                                                    0
                          DEGRADED
                                              0
                                                    0
        draid3-0
                          DEGRADED
                                        0
                          DEGRADED
                                        0
                                              0
                                                    0
          spare-0
                                              0
            sdb
                          FAULTED
                                       66
                                                    0 too many errors
            $draid3-0-s0 ONLINE
                                              0
                                        0
                                                    0 (repairing)
          sdc
                          ONLINE
                                        0
                                              0
                                                    0 (repairing)
          sdd
                                        0
                                              0
                                                    0 (repairing)
                          ONLINE
          sde
                          ONLINE
                                        0
                                              0
                                                    0
                                                      (repairing)
          sdf
                          ONLINE
                                        0
                                              0
                                                    0
                                                      (repairing)
          spare-5
                          DEGRADED
                                        0
                                              0
                                                    0
            sdq
                          FAULTED
                                       65
                                              0
                                                    0 too many errors
            $draid3-0-s1 ONLINE
                                        0
                                              0
                                                    0 (repairing)
                                        0
                                              0
                                                    0 (repairing)
          sdh
                          ONLINE
          sdi
                                        0
                                              0
                                                    0 (repairing)
                          ONLINE
                          ONLINE
                                        0
                                              0
                                                    0 (repairing)
          sdj
          sdk
                          ONLINE
                                        0
                                              0
                                                    0 (repairing)
                                                    0
          sdl
                          ONLINE
                                        0
                                              0
                                                       (repairing)
          sdm
                          FAULTED
                                      495
                                              0
                                                    0 too many errors
      spares
        $draid3-0-s0
                                     currently in use
                          INUSE
        $draid3-0-s1
                          INUSE
                                     currently in use
        $draid3-0-s2
                          AVAIL
errors: No known data errors
```

A.6.1.4 Third Failure

The third fault occurred while the first rebuild was in progress. The Retire Agent received the fault from the Diagnosis Engine and sent a fault event for the drive to ZFS. The Agent attempted to swap in the next available spare (still the 2nd distributed spare drive) only to find that the device was busy because a rebuild was in progress. The Retire Agent saved the request to be replayed later after the rebuild completes.

Diagnosis Engine: solving fault 'fault.fs.zfs.vdev.io'


```
zed_fault_event:
     uuid: ae95fc42-ccd1-4a03-924c-649ecda66de8
      class: fault.fs.zfs.vdev.io
     code: ZFS-8000-FD
     certainty: 100
     scheme: zfs
     pool: 1320611588736634121
     vdev: 4853321467358484743
Diagnosis Engine: case solved (ae95fc42-ccd1-4a03-924c-649ecda66de8)
Diagnosis Engine: removing timer (0x7f12d0045460)
Retire Agent: zfs_retire_recv: 'list.suspect'
Retire Agent: matched vdev 4853321467358484743
Retire Agent: zpool_vdev_fault: vdev 4853321467358484743 on 'mfault'
Retire Agent: zpool_vdev_replace 'sdm' with spare '$draid3-0-s1'
Retire Agent: zpool_vdev_attach 'sdm' busy. Saving request.'
Retire Agent: Saved request pool_guid 1320611588736634121 vdev_guid
4853321467358484743.
Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'
```

Because the fault of sdm is the second spare request saved, the drive will not be replaced until after the dRAID recovers from the fault of the second failed drive (sdg). The replacement of sdm to the third distributed spare (\$draid3-0-s2) starts after the Retire Agent received the rebuild_finish for sdg.

```
Retire Agent: zfs_retire_recv: 'sysevent.fs.zfs.rebuild_finish'
Retire Agent: Replaying spare request pool_guid 1320611588736634121 vdev_guid
4853321467358484743.
Retire Agent: matched vdev 4853321467358484743
Retire Agent: zpool_vdev_replace 'sdm' with spare '$draid3-0-s2'
```

Zpool status shows that rebuild of the third failed drive was in progress.

```
pool: mfault
state: DEGRADED
status: One or more devices are faulted in response to persistent errors.
Sufficient replicas exist for the pool to continue functioning in a
degraded state.
action: Replace the faulted device, or use 'zpool clear' to mark the device
repaired.
scan: rebuild in progress since Tue Jun 27 20:07:44 2017
1.96G scanned out of 128G at 1002M/s, 0h2m to go
103M rebuilt, 1.53% done
config:
```


DEGRADED	0	0	0	
-	~			
	0	0	0	
DEGRADED	0	0	0	
AULTED	66	0	0	too many errors
DNLINE	0	0	0	(repairing)
DNLINE	0	0	0	(repairing)
DNLINE	0	0	0	(repairing)
DNLINE	0	0	0	(repairing)
DNLINE	0	0	0	(repairing)
DEGRADED	0	0	0	
AULTED	65	0	0	too many errors
NLINE	0	0	0	(repairing)
NLINE	0	0	0	(repairing)
NLINE	0	0	0	(repairing)
NLINE	0	0	0	(repairing)
NLINE	0	0	0	(repairing)
NLINE	0	0	0	(repairing)
DEGRADED	0	0	0	
AULTED	495	0	0	too many errors
NLINE	0	0	0	(repairing)
NUSE	curre	ently :	in use	
NUSE	curre	ently :	in use	
NUSE	curre	ently :	in use	
	ONLINE ONLINE ONLINE OEGRADED OULINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE ONLINE	ONLINEOONLINEOONLINEOONLINEOOEGRADEDOCAULTED65ONLINEOONLINEOONLINEOONLINEOONLINEOONLINEOONLINEOONLINEOONLINEOCOULTED495ONLINEOCNUSEcurredCNUSEcurredCNUSEcurred	DNLINE00DNLINE00DNLINE00DNLINE00DEGRADED00DAULTED650DNLINE00DNLINE00DNLINE00DNLINE00DNLINE00DNLINE00DNLINE00DNLINE00DNLINE00DNLINE00CAULTED4950DNLINE00CAULTED4950DNLINE00CAULTEDcurrently1CNUSEcurrently1CNUSEcurrently1	ONLINE O O O ONLINE <td< td=""></td<>

A.6.1.5 Rebuild Complete

е

ZFS will send a state change event to the Diagnosis Engine after the rebuild of each drive completes to indicate that the repair is complete and the replaced drive is healthy.

```
Diagnosis Engine: resource event 'resource.fs.zfs.statechange'

Diagnosis Engine: closing case after a device statechange to healthy

Diagnosis Engine: case closed (cc7e90a9-f96d-4937-ace2-54502acfc9ec)

Diagnosis Engine: serd_destroy zfs_1253c13e38e94d09_b53df7b7fad57abe_io

Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'

Retire Agent: marking repaired vdev 13059866864003676862 on pool

1320611588736634121

Diagnosis Engine: resource event 'resource.fs.zfs.statechange'

Diagnosis Engine: closing case after a device statechange to healthy

Diagnosis Engine: case closed (602adf2c-c4dc-4613-88de-de3442182e6d)

Diagnosis Engine: serd_destroy zfs_1253c13e38e94d09_498298540f35c3a4_io
```


Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange' Retire Agent: marking repaired vdev 5296963598540981156 on pool 1320611588736634121

Diagnosis Engine: resource event 'resource.fs.zfs.statechange' Diagnosis Engine: closing case after a device statechange to healthy Diagnosis Engine: case closed (ae95fc42-ccd1-4a03-924c-649ecda66de8) Diagnosis Engine: serd_destroy zfs_1253c13e38e94d09_435a76291aae1907_io Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange' Retire Agent: marking repaired vdev 4853321467358484743 on pool 1320611588736634121

Upon completion of the last rebuild, zpool status showed that all three spares were in use and the pool was restored to full redundancy. Note, however, that ZFS considers use of a spare device to be a fault and the zpool status will continue to report the array to be in a degraded state until the failed drives are physically replaced, the recovered blocks are rebalanced to the replacement drives, and the distributed spare drives are restored and available for the next failure.

1 . C 1 .							
pool: mfault							
state: DEGRADED							
status: One or more devic			-		-		
Sufficient replicas	exist for	the poc	ol to d	conti	nue	funct	ioning in a
degraded state.							
action: Replace the fault	ed device,	or use	'zpoo	l cle	ar'	to ma	rk the device
repaired.							
scan: rebuilt 12.8G in	0h2m25s wi	th 0 err	ors of	n Tue	Jun	27 2	0:10:09 2017
config:							
NAME	STATE	READ WR	LITE CI	KSUM			
mfault	DEGRADED	0	0	0			
draid3-0	DEGRADED	0	0	0			
spare-0	DEGRADED	0	0	0			
sdb	FAULTED	66	0	0	too	many	errors
\$draid3-0-s0	ONLINE	0	0	0			
sdc	ONLINE	0	0	0			
sdd	ONLINE	0	0	0			
sde	ONLINE	0	0	0			
sdf	ONLINE	0	0	0			
spare-5	DEGRADED	0	0	0			
sdg	FAULTED	65	0	0	too	many	errors
\$draid3-0-s1	ONLINE	0	0	0			
sdh	ONLINE	0	0	0			
sdi	ONLINE	0	0	0			
sdj	ONLINE	0	0	0			
sdk	ONLINE	0	0	0			

sdl	ONLINE	0	0	0	
spare-11	DEGRADED	0	0	0	
sdm	FAULTED	495	0	0	too many errors
\$draid3-0-s2	ONLINE	0	0	0	
spares					
\$draid3-0-s0	INUSE	currentl	y in	use	
\$draid3-0-s1	INUSE	currentl	y in	use	
\$draid3-0-s2	INUSE	currentl	y in	use	
errors: No known data err	ors				

Appendix B. dRAID Configuration Examples

B.1 'zdb –m' for a dRAID pool without segregation

The following listing shows the status of the simple 43-drive dRAID previously described in section A.2.2. This dRAID was not configured to use metadata isolation. As a result, all metaslabs are used for all categories of ZFS storage (generic, metadata, small block).

[root@ssu2_oss1]#	zdb -m	ssu_2ost	0					
Metaslabs:								
vdev	0							
metaslabs	291	offset		size	spacemap		free	
metaslab	0	offset	0	size 400000000	spacemap	114	free	7.36M
metaslab	1	offset	400006000	size 3fffffa000	spacemap	113	free	1.64G
metaslab	2	offset	8000002000	size 3ffffe000	spacemap	112	free	861M
metaslab	3	offset	c000008000	size 3fffff8000	spacemap	123	free	1.04G
metaslab	4	offset	1000004000	size 3ffffc000	spacemap	122	free	1.07G
metaslab	5	offset	14000000000	size 400000000	spacemap	124	free	993M
metaslab	б	offset	18000006000	size 3fffffa000	spacemap	125	free	794M
metaslab	7	offset	1c000002000	size 3ffffe000	spacemap	126	free	1.03G
metaslab	8	offset	2000008000	size 3fffff8000	spacemap	128	free	973M
metaslab	9	offset	2400004000	size 3ffffc000	spacemap	127	free	1.19G
metaslab	10	offset	28000000000	size 4000000000	spacemap	130	free	1.86G
metaslab	11	offset	2c000006000	size 3fffffa000	spacemap	129	free	1.15G
metaslab	12	offset	3000002000	size 3ffffe000	spacemap	132	free	1.47G
metaslab	13	offset	34000008000	size 3fffff8000	spacemap	131	free	746M
metaslab	14	offset	38000004000	size 3ffffc000	spacemap	134	free	1.34G
metaslab	15	offset	3c000000000	size 400000000	spacemap	133	free	1.25G
metaslab	16	offset	4000006000	size 3fffffa000	spacemap	136	free	1001M
metaslab	17	offset	44000002000	size 3ffffe000	spacemap	135	free	1.31G
metaslab	18	offset	48000008000	size 3fffff8000	spacemap	138	free	1.03G
metaslab	19	offset	4c000004000	size 3ffffc000	spacemap	137	free	1.01G
metaslab	20	offset	50000000000	size 4000000000	spacemap	140	free	1.17G
metaslab	21	offset	54000006000	size 3fffffa000	spacemap	139	free	1.13G

metaslab	22	offset	58000002000	size 3fffffe000	spacemap	142	free	992M	
metaslab	23	offset	5c000008000	size 3fffff8000	spacemap	141	free	863M	
metaslab	24	offset	6000004000	size 3ffffc000	spacemap	144	free	7.61G	
metaslab	25	offset	64000000000	size 4000000000	spacemap	143	free	4.92G	
metaslab	26	offset	68000006000	size 3fffffa000	spacemap	145	free	29.4G	
metaslab	27	offset	6c000002000	size 3ffffe000	spacemap	147	free	17.7G	
metaslab	28	offset	7000008000	size 3fffff8000	spacemap	146	free	1.28G	
metaslab	29	offset	74000004000	size 3ffffc000	spacemap	148	free	1.05G	
metaslab	30	offset	78000000000	size 4000000000	spacemap	151	free	13.4G	
metaslab	31	offset	7c000006000	size 3fffffa000	spacemap	150	free	1.86G	
metaslab	32	offset	8000002000	size 3ffffe000	spacemap	149	free	1.42G	
metaslab	33	offset	8400008000	size 3fffff8000	spacemap	154	free	7.43G	
metaslab	34	offset	88000004000	size 3ffffc000	spacemap	153	free	21.1G	
metaslab	35	offset	8c000000000	size 4000000000	spacemap	152	free	1009M	
metaslab	36	offset	90000006000	size 3fffffa000	spacemap	156	free	15.9G	
metaslab	37	offset	94000002000	size 3fffffe000	spacemap	155	free	2.11G	
metaslab	38	offset	98000008000	size 3fffff8000	spacemap	157	free	1.59G	
metaslab	39	offset	9c000004000	size 3fffffc000	spacemap	160	free	43.9G	
metaslab	40	offset	a0000000000	size 4000000000	spacemap	159	free	3.93G	
metaslab	41	offset	a4000006000	size 3fffffa000	spacemap	158	free	1.10G	
metaslab	42	offset	a8000002000	size 3fffffe000	spacemap	163	free	27.7G	
metaslab	43	offset	ac000008000	size 3fffff8000	spacemap	162	free	2.59G	
metaslab	44	offset	b0000004000	size 3fffffc000	spacemap	161	free	2.38G	
metaslab	45	offset	b4000000000	size 4000000000	spacemap	165	free	33.6G	
metaslab	46	offset	b8000006000	size 3fffffa000	spacemap	164	free	25.1G	
metaslab	47	offset	bc000002000	size 3fffffe000	spacemap	166	free	1.25G	
metaslab	48	offset	c0000008000	size 3fffff8000	spacemap	169	free	27.1G	
metaslab	49	offset	c4000004000	size 3ffffc000	spacemap	168	free	2.46G	
metaslab	50	offset	c8000000000	size 4000000000	spacemap	167	free	40.4G	
metaslab	51	offset	cc000006000	size 3fffffa000	spacemap	171	free	49.5G	
metaslab	52	offset	d0000002000	size 3fffffe000	spacemap	170	free	2.11G	
metaslab	53	offset	d4000008000	size 3fffff8000	spacemap	172	free	1.05G	
metaslab	54	offset	d8000004000	size 3fffffc000	spacemap	174	free	28.1G	
metaslab	55	offset	dc000000000	size 400000000	spacemap	173	free	1.34G	
metaslab	56	offset	e0000006000	size 3fffffa000	spacemap	175	free	1.44G	
metaslab	57	offset	e4000002000	size 3ffffe000	spacemap	178	free	27.5G	

metaslab	58	offset e8000008000	size 3fffff8000	spacemap	177	free	2.59G
metaslab	59	offset ec000004000	size 3ffffc000	spacemap	176	free	708M
metaslab	60	offset f000000000	size 4000000000	spacemap	181	free	22.6G
metaslab	61	offset f4000006000	size 3fffffa000	spacemap	180	free	2.70G
metaslab	62	offset f8000002000	size 3fffffe000	spacemap	179	free	1003M
metaslab	63	offset fc000008000	size 3fffff8000	spacemap	184	free	25.2G
metaslab	64	offset 10000004000	size 3fffffc000	spacemap	183	free	2.73G
metaslab	65	offset 10400000000	size 4000000000	spacemap	182	free	647M
metaslab	66	offset 108000006000	size 3fffffa000	spacemap	187	free	29.2G
metaslab	67	offset 10c000002000	size 3fffffe000	spacemap	186	free	2.49G
metaslab	68	offset 11000008000	size 3fffff8000	spacemap	185	free	45.8G
metaslab	69	offset 114000004000	size 3ffffc000	spacemap	189	free	26.1G
metaslab	70	offset 11800000000	size 4000000000	spacemap	188	free	1.97G
metaslab	71	offset 11c000006000	size 3fffffa000	spacemap	190	free	1.07G
metaslab	72	offset 120000002000	size 3ffffe000	spacemap	193	free	27.5G
metaslab	73	offset 124000008000	size 3fffff8000	spacemap	192	free	2.74G
metaslab	74	offset 128000004000	size 3ffffc000	spacemap	191	free	1.77G
metaslab	75	offset 12c00000000	size 4000000000	spacemap	196	free	28.1G
metaslab	76	offset 13000006000	size 3fffffa000	spacemap	195	free	40.2G
metaslab	77	offset 134000002000	size 3ffffe000	spacemap	194	free	777M
metaslab	78	offset 138000008000	size 3fffff8000	spacemap	198	free	26.7G
metaslab	79	offset 13c000004000	size 3ffffc000	spacemap	197	free	1.78G
metaslab	80	offset 14000000000	size 400000000	spacemap	199	free	35.1G
metaslab	81	offset 144000006000	size 3fffffa000	spacemap	201	free	27.9G
metaslab	82	offset 148000002000	size 3ffffe000	spacemap	200	free	41.0G
metaslab	83	offset 14c000008000	size 3fffff8000	spacemap	202	free	38.2G
metaslab	84	offset 150000004000	size 3ffffc000	spacemap	203	free	17.9G
metaslab	85	offset 15400000000	size 4000000000	spacemap	204	free	1.70G
metaslab	86	offset 158000006000	size 3fffffa000	spacemap	205	free	1.84G
metaslab	87	offset 15c000002000	size 3ffffe000	spacemap	208	free	27.3G
metaslab	88	offset 16000008000	size 3fffff8000	spacemap	207	free	3.12G
metaslab	89	offset 164000004000	size 3ffffc000	spacemap	206	free	1.51G
metaslab	90	offset 16800000000	size 4000000000	spacemap	211	free	25.8G
metaslab	91	offset 16c000006000	size 3fffffa000	spacemap	210	free	3.29G
metaslab	92	offset 170000002000	size 3ffffe000	spacemap	209	free	2.14G
metaslab	93	offset 17400008000	size 3fffff8000	spacemap	214	free	22.3G

metaalab 94 offset 17800000400 siz 3ffffc00 spacemap 213 free 2.643 metaalab 95 offset 1800000000 siz 3ffffa00 spacemap 217 free 2.246 metaalab 97 offset 18400000000 siz 3ffffa00 spacemap 215 free 2.643 metaalab 99 offset 18400000000 siz 3ffffa00 spacemap 215 free 2.643 metaalab 99 offset 18400000000 siz 3ffffa000 spacemap 219 free 2.643 metaalab 100 offset 19400000000 siz 3ffffa000 spacemap 219 free 2.643 metaalab 101 offset 19400000000 siz 3ffffa000 spacemap 221 free 1.723 metaalab 104 offset 1800000000 siz 3ffffa000 spacemap 221 free 2.663 metaalab 105 offset 1800000000 siz 3ffffa000 spacemap 225 free 2.663 metaalab </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
metaslab 96 offset 1800000000 size 3fffffa000 spacemap 217 free 2.43 metaslab 97 offset 1800000000 size 3ffffe000 spacemap 215 free 2.640 metaslab 99 offset 1800000000 size 3ffffe000 spacemap 220 free 2.650 metaslab 100 offset 1900000000 size 400000000 spacemap 219 free 2.580 metaslab 101 offset 1900000200 size 3ffffe000 spacemap 221 free 2.700 metaslab 102 offset 1900000200 size 3ffffe000 spacemap 221 free 2.666 metaslab 104 offset 1a00000400 size 3ffffe000 spacemap 221 free 2.840 metaslab 106 offset 1a00000000 size 3ffffe000 spacemap 224 free 2.846 metaslab 107 offset 1a00000000 size 3ffffe000 spacemap 224 free 2.846 metaslab 109 offset 1a00000000 size 3fffffe000 spacemap 223 <td>metaslab</td> <td>94</td> <td>offset 178000004000</td> <td>size 3fffffc000</td> <td>spacemap</td> <td>213</td> <td>free</td> <td>2.64G</td>	metaslab	94	offset 178000004000	size 3fffffc000	spacemap	213	free	2.64G
metaslab 97 offset 18400002000 size 3ffffe000 spacemap 216 free 2.64G metaslab 98 offset 18400008000 size 3ffffe000 spacemap 215 free 1.79G metaslab 100 offset 1800000000 size 3ffffe000 spacemap 218 free 2.53G metaslab 100 offset 1940000600 size 3ffffe000 spacemap 218 free 1.72G metaslab 103 offset 1940000600 size 3ffffe000 spacemap 221 free 2.66G metaslab 104 offset 1a400000000 size 3ffffe000 spacemap 225 free 2.84G metaslab 106 offset 1a400000000 size 3ffffe000 spacemap 224 free 1.55G metaslab 109 offset 1b400004000 size 3ffffe000 spacemap 231 free	metaslab	95	offset 17c00000000	size 4000000000	spacemap	212	free	1.52G
metaslab 98 offset 18800008000 size 3ffff8000 spacemap 215 free 1.796 metaslab 99 offset 1900000000 size 3ffff6000 spacemap 220 free 26.5G metaslab 101 offset 1900000000 size 3ffff600 spacemap 218 free 1.720 metaslab 102 offset 1900000000 size 3ffff6000 spacemap 221 free 2.66G metaslab 104 offset 1900000000 size 3ffff6000 spacemap 225 free 2.86G metaslab 106 offset 1400000000 size 3ffff6000 spacemap 224 free 1.65G metaslab 107 offset 1480000000 size 3ffff600 spacemap 224 free 1.55G metaslab 109 offset 1400000000 size 3ffff600 spacemap 231 free <	metaslab	96	offset 180000006000	size 3fffffa000	spacemap	217	free	22.4G
metaslab 99 offset 18c000004000 size 3ffffc000 spacemap 210 free 26.56 metaslab 100 offset 19400000000 size 3fffff000 spacemap 213 free 2.586 metaslab 102 offset 1980000200 size 3fffff000 spacemap 223 free 2.7.06 metaslab 103 offset 1960000000 size 3fffff000 spacemap 221 free 2.666 metaslab 104 offset 1a400000000 size 3fffff000 spacemap 225 free 2.616 metaslab 106 offset 1a400000000 size 3fffff000 spacemap 224 free 2.846 metaslab 108 offset 1a000000000 size 3fffff000 spacemap 224 free 2.966 metaslab 109 offset 1b00000000 size 3fffff000 spacemap 231 free 2.736 metaslab 111 offset 1b000000000 size<	metaslab	97	offset 184000002000	size 3ffffe000	spacemap	216	free	2.64G
metaslab 100 offset 19000000000 size 31ffffe000 spacemap 219 free 2.586 metaslab 101 offset 19400006000 size 31ffffe000 spacemap 218 free 2.7.06 metaslab 103 offset 1900000000 size 31ffffe000 spacemap 221 free 2.66G metaslab 104 offset 1400000000 size 31ffffe000 spacemap 221 free 2.61G metaslab 106 offset 1400000000 size 31ffffe000 spacemap 225 free 2.84G metaslab 107 offset 1600000800 size 31fffe000 spacemap 228 free 2.96G metaslab 110 offset 16400000000 size 31fffe000 spacemap 230 free 2.73G metaslab 111 offset 16400000000 size 31fffe000 spacemap 230 free 2.73G metaslab 113 offset 16000000000 s	metaslab	98	offset 188000008000	size 3fffff8000	spacemap	215	free	1.79G
metaslab 101 offset 19400006000 size 3ffff4000 spacemap 218 free 1.720 metaslab 102 offset 19800000000 size 3ffff6000 spacemap 223 free 2.66G metaslab 104 offset 1a00000000 size 3ffff000 spacemap 221 free 1.24G metaslab 105 offset 1a40000000 size 3ffff000 spacemap 226 free 2.64G metaslab 106 offset 1a00000000 size 3ffff000 spacemap 229 free 4.56 metaslab 107 offset 1b00000000 size 3ffff000 spacemap 227 free 1.53G metaslab 110 offset 1b00000000 size 3ffff000 spacemap 231 free 2.73G metaslab 111 offset 1a00000000 size 3ffff000 spacemap 232 free 1.62G metaslab 113 offset 1c000000000 size	metaslab	99	offset 18c000004000	size 3ffffc000	spacemap	220	free	26.5G
metaslab 102 offset 19800002000 size 3fffff000 spacemap 223 free 27.0G metaslab 103 offset 1900000000 size 3fffff000 spacemap 221 free 2.6GG metaslab 105 offset 1a40000000 size 3fffff000 spacemap 226 free 2.61G metaslab 106 offset 1a40000000 size 3fffff000 spacemap 225 free 2.84G metaslab 106 offset 1b00000800 size 3fffff800 spacemap 228 free 2.9GG metaslab 100 offset 1b00000800 size 3fffff800 spacemap 221 free 2.8GG metaslab 110 offset 1b000008000 size 3ffff800 spacemap 230 free 2.73G metaslab 112 offset 1c00000200 size 3ffff800 spacemap 231 free 4.6G metaslab 113 offset 1c00000000 size	metaslab	100	offset 190000000000	size 4000000000	spacemap	219	free	2.58G
metaslab 103 offset 19000008000 size 3ffff8000 spacemap 222 free 2.66G metaslab 104 offset 1a0000000 size 3ffff6000 spacemap 221 free 1.24G metaslab 105 offset 1a40000000 size 3fffff000 spacemap 225 free 2.84G metaslab 107 offset 1a00004000 size 3fffff000 spacemap 224 free 1.55G metaslab 109 offset 1b00004000 size 3fffff000 spacemap 228 free 2.96G metaslab 100 offset 1b00000000 size 3fffff000 spacemap 230 free 1.53G metaslab 110 offset 1c000002000 size 3fffff000 spacemap 230 free 1.62G metaslab 112 offset 1c00000200 size 3fffff000 spacemap 235 free 1.62G metaslab 114 offset 1c00000000 size	metaslab	101	offset 194000006000	size 3fffffa000	spacemap	218	free	1.72G
metaslab 104 offset 1000000000 size 3ffffc000 spacemap 221 free 1.24G metaslab 105 offset 1a800000000 size 400000000 spacemap 226 free 26.1G metaslab 106 offset 1a80000200 size 3ffffe000 spacemap 224 free 1.55G metaslab 108 offset 1b400000000 size 3ffffe000 spacemap 229 free 44.5G metaslab 109 offset 1b400000000 size 3ffffe000 spacemap 221 free 1.5G metaslab 110 offset 1b400000000 size 3ffffa000 spacemap 231 free 2.96G metaslab 111 offset 1c00000000 size 3ffffa000 spacemap 231 free 1.53G metaslab 112 offset 1c00000000 size 3ffff000 spacemap 235 free 4.63G metaslab 114 offset 1c00000000 size3	metaslab	102	offset 198000002000	size 3fffffe000	spacemap	223	free	27.0G
metaslab 105 offset 1a400000000 size 400000000 spacemap 226 free 26.1G metaslab 106 offset 1a800006000 size 3ffffa000 spacemap 225 free 2.84G metaslab 107 offset 1a00000200 size 3ffffa000 spacemap 224 free 1.55G metaslab 109 offset 1b00000000 size 3ffffa000 spacemap 228 free 2.96G metaslab 110 offset 1b00000000 size 3ffffa000 spacemap 221 free 2.86G metaslab 111 offset 1c00000000 size 3ffffa000 spacemap 230 free 2.73G metaslab 113 offset 1c00000000 size 3ffffa000 spacemap 235 free 46.8G metaslab 114 offset 1c00000000 size 3ffffa000 spacemap 235 free 45.8G metaslab 116 offset 1c00000000 size3	metaslab	103	offset 19c00008000	size 3fffff8000	spacemap	222	free	2.66G
metaslab 106 offset 1a800006000 size 3fffffa000 spacemap 225 free 2.84G metaslab 107 offset 1ac00002000 size 3fffff8000 spacemap 224 free 1.55G metaslab 108 offset 1b400004000 size 3fffff8000 spacemap 229 free 44.5G metaslab 110 offset 1b400004000 size 3ffff6000 spacemap 227 free 1.53G metaslab 111 offset 1b400000000 size 3ffff6000 spacemap 230 free 2.73G metaslab 111 offset 1c400000000 size 3ffff6000 spacemap 231 free 28.0G metaslab 114 offset 1c400000000 size 3ffff6000 spacemap 235 free 4.07G metaslab 115 offset 1c400000000 size 3ffff6000 spacemap 233 free 2.92G metaslab 116 offset 1d4000002000 <td< td=""><td>metaslab</td><td>104</td><td>offset 1a0000004000</td><td>size 3ffffc000</td><td>spacemap</td><td>221</td><td>free</td><td>1.24G</td></td<>	metaslab	104	offset 1a0000004000	size 3ffffc000	spacemap	221	free	1.24G
metaslab 107 offset lac00002000 size 3fffffe000 spacemap 224 free 1.556 metaslab 108 offset lb000008000 size 3ffff8000 spacemap 229 free 44.56 metaslab 109 offset lb00000000 size 3ffff6000 spacemap 228 free 2.966 metaslab 110 offset lb00000000 size 3ffff8000 spacemap 231 free 28.06 metaslab 111 offset lb00000000 size 3ffff8000 spacemap 231 free 28.06 metaslab 112 offset lc00000000 size 3ffff8000 spacemap 232 free 1.62 metaslab 113 offset lc00000000 size 3ffff8000 spacemap 234 free 4.076 metaslab 114 offset lc00000000 size 3ffff6000 spacemap 233 free 1.596 metaslab 117 offset lc00000000 size3	metaslab	105	offset 1a4000000000	size 4000000000	spacemap	226	free	26.1G
metaslab 108 offset 1b0000008000 size 3ffff8000 spacemap 229 free 44.5G metaslab 109 offset 1b40000000 size 3ffff6000 spacemap 228 free 2.96G metaslab 110 offset 1b80000000 size 400000000 spacemap 221 free 1.53G metaslab 111 offset 1c000002000 size 3ffff600 spacemap 230 free 2.73G metaslab 113 offset 1c400008000 size 3ffff600 spacemap 232 free 1.62G metaslab 114 offset 1c80000000 size 3ffff600 spacemap 233 free 4.07G metaslab 115 offset 1c000000000 size 3fffff8000 spacemap 234 free 1.59G metaslab 116 offset 1d4000002000 size 3fffff000 spacemap 236 free 1.54G metaslab 119 offset 1d40000000000 size	metaslab	106	offset 1a8000006000	size 3fffffa000	spacemap	225	free	2.84G
metaslab 109 offset 1b400004000 size 3fffffc000 spacemap 228 free 2.96G metaslab 110 offset 1b80000000 size 3fffffa000 spacemap 227 free 1.53G metaslab 111 offset 1bc0000000 size 3fffffa000 spacemap 231 free 2.0G metaslab 112 offset 1c00000200 size 3fffffe000 spacemap 230 free 2.73G metaslab 113 offset 1c400008000 size 3fffff8000 spacemap 231 free 46.8G metaslab 115 offset 1c400000000 size 3ffffe000 spacemap 233 free 4.07G metaslab 116 offset 1d000000000 size 3ffffe000 spacemap 233 free 1.59G metaslab 117 offset 1d800000000 size 3fffffe000 spacemap 236 free 1.54G metaslab 120 offset 1d8000000000	metaslab	107	offset 1ac000002000	size 3fffffe000	spacemap	224	free	1.55G
metaslab 110 offset 1b800000000 size 400000000 spacemap 227 free 1.53G metaslab 111 offset 1b00000000 size 3ffffa000 spacemap 231 free 28.0G metaslab 112 offset 1c000002000 size 3ffffa000 spacemap 230 free 2.73G metaslab 113 offset 1c400008000 size 3fffff8000 spacemap 232 free 1.62G metaslab 114 offset 1c40000000 size 3fffff6000 spacemap 233 free 4.07G metaslab 116 offset 1d00000600 size 3fffff000 spacemap 233 free 1.59G metaslab 117 offset 1d00000000 size 3ffff600 spacemap 237 free 2.92G metaslab 119 offset 1d00000000 size 3ffff600 spacemap 236 free 1.54G metaslab 120 offset 1e000000000 size <td>metaslab</td> <td>108</td> <td>offset 1b000008000</td> <td>size 3fffff8000</td> <td>spacemap</td> <td>229</td> <td>free</td> <td>44.5G</td>	metaslab	108	offset 1b000008000	size 3fffff8000	spacemap	229	free	44.5G
metaslab 111 offset 1bc00000000 size 3fffffa000 spacemap 231 free 28.0G metaslab 112 offset 1c000002000 size 3fffffe000 spacemap 230 free 2.73G metaslab 113 offset 1c400008000 size 3fffffe000 spacemap 232 free 1.62G metaslab 114 offset 1c800004000 size 3ffffc000 spacemap 235 free 46.8G metaslab 115 offset 1c00000000 size 3ffffc000 spacemap 233 free 45.9G metaslab 117 offset 1d000000000 size 3ffff6000 spacemap 237 free 2.92G metaslab 119 offset 1d00000000 size 3fffff000 spacemap 236 free 1.54G metaslab 119 offset 1d00000000 size 3fffff000 spacemap 240 free 2.55G metaslab 120 offset 1e000000000 siz	metaslab	109	offset 1b4000004000	size 3ffffc000	spacemap	228	free	2.96G
metaslab 112 offset 1c000002000 size 3fffffe000 spacemap 230 free 2.73G metaslab 113 offset 1c400008000 size 3fffff8000 spacemap 232 free 1.62G metaslab 114 offset 1c800004000 size 3fffffc000 spacemap 235 free 46.8G metaslab 115 offset 1cc00000000 size 3fffffa000 spacemap 233 free 1.59G metaslab 116 offset 1d000006000 size 3fffff8000 spacemap 238 free 2.59G metaslab 118 offset 1d800008000 size 3fffff8000 spacemap 236 free 1.54G metaslab 119 offset 1e000000000 size 3ffff8000 spacemap 240 free 2.55G metaslab 120 offset 1e000006000 size 3ffff8000 spacemap 240 free 2.55G metaslab 122 offset 1e000008000 <	metaslab	110	offset 1b800000000	size 4000000000	spacemap	227	free	1.53G
metaslab 113 offset 1c4000008000 size 3fffff8000 spacemap 232 free 1.62G metaslab 114 offset 1c800004000 size 3fffffc000 spacemap 235 free 46.8G metaslab 115 offset 1cc00000000 size 400000000 spacemap 234 free 4.07G metaslab 116 offset 1d000006000 size 3ffff6000 spacemap 233 free 1.59G metaslab 117 offset 1d400002000 size 3ffff6000 spacemap 237 free 2.92G metaslab 118 offset 1d00000000 size 3ffff6000 spacemap 236 free 1.54G metaslab 119 offset 1dc00000000 size 3ffff6000 spacemap 240 free 2.55G metaslab 121 offset 1e000000000 size 3ffff6000 spacemap 240 free 1.38G metaslab 122 offset 1e000000000 s	metaslab	111	offset 1bc000006000	size 3fffffa000	spacemap	231	free	28.0G
metaslab 114 offset 1c800004000 size 3fffffc000 spacemap 235 free 46.8G metaslab 115 offset 1cc0000000 size 40000000 spacemap 234 free 4.07G metaslab 116 offset 1d00000600 size 3ffffa000 spacemap 233 free 1.59G metaslab 117 offset 1d400002000 size 3fffffe000 spacemap 238 free 2.92G metaslab 118 offset 1d800004000 size 3fffffe000 spacemap 236 free 2.92G metaslab 119 offset 1dc00000000 size 3fffffe000 spacemap 236 free 1.54G metaslab 120 offset 1e000000000 size 3fffffa000 spacemap 240 free 2.55G metaslab 121 offset 1e00000000 size 3fffff000 spacemap 244 free 28.7G metaslab 123 offset 1e000000000 si	metaslab	112	offset 1c0000002000	size 3fffffe000	spacemap	230	free	2.73G
metaslab 115 offset 1cc00000000 size 400000000 spacemap 234 free 4.07G metaslab 116 offset 1d000006000 size 3ffffa000 spacemap 233 free 1.59G metaslab 117 offset 1d400002000 size 3ffffe000 spacemap 238 free 25.9G metaslab 118 offset 1d800008000 size 3fffffe000 spacemap 236 free 1.54G metaslab 119 offset 1dc00000000 size 3fffffe000 spacemap 241 free 28.7G metaslab 120 offset 1e000000000 size 3fffffa000 spacemap 240 free 2.55G metaslab 121 offset 1e4000002000 size 3fffffa000 spacemap 240 free 2.55G metaslab 122 offset 1e800002000 size 3fffff8000 spacemap 244 free 28.7G metaslab 123 offset 1f0000004000	metaslab	113	offset 1c4000008000	size 3fffff8000	spacemap	232	free	1.62G
metaslab 116 offset 1d000006000 size 3fffffa000 spacemap 233 free 1.59G metaslab 117 offset 1d400002000 size 3fffffa000 spacemap 238 free 25.9G metaslab 118 offset 1d800008000 size 3fffff8000 spacemap 237 free 2.92G metaslab 119 offset 1dc00000000 size 3fffff000 spacemap 236 free 1.54G metaslab 120 offset 1e000000000 size 3fffff000 spacemap 241 free 28.7G metaslab 121 offset 1e4000006000 size 3fffff000 spacemap 239 free 1.38G metaslab 122 offset 1e800002000 size 3fffff8000 spacemap 244 free 28.7G metaslab 123 offset 1f000004000 size 3fffff8000 spacemap 243 free 4.02G metaslab 126 offset 1f8000006000	metaslab	114	offset 1c8000004000	size 3ffffc000	spacemap	235	free	46.8G
metaslab117offset1d400002000size3fffffe000spacemap238free25.9Gmetaslab118offset1d800008000size3fffff8000spacemap237free2.92Gmetaslab119offset1dc00004000size3fffffc000spacemap236free1.54Gmetaslab120offset1e000000000size40000000spacemap241free28.7Gmetaslab121offset1e400006000size3fffffa000spacemap240free2.55Gmetaslab122offset1e800002000size3fffffe000spacemap239free1.38Gmetaslab123offset1ec00008000size3fffff8000spacemap244free28.7Gmetaslab123offset1f000004000size3fffff8000spacemap244free28.7Gmetaslab124offset1f000004000size3fffff8000spacemap243free4.02Gmetaslab125offset1f400000000size3fffffa000spacemap242free1.64Gmetaslab126offset1f800006000size3fffffa000spacemap247free28.9Gmetaslab127offset1fc00002000size3fffffe000spacemap246free3.00Gmetaslab128offset20000008000size3fffff8000spac	metaslab	115	offset 1cc000000000	size 4000000000	spacemap	234	free	4.07G
<pre>metaslab 118 offset 1d8000008000 size 3fffff8000 spacemap 237 free 2.92G metaslab 119 offset 1dc000004000 size 3fffffc000 spacemap 236 free 1.54G metaslab 120 offset 1e000000000 size 400000000 spacemap 241 free 28.7G metaslab 121 offset 1e400006000 size 3fffffa000 spacemap 240 free 2.55G metaslab 122 offset 1e800002000 size 3fffffe000 spacemap 239 free 1.38G metaslab 123 offset 1ec00008000 size 3fffff8000 spacemap 244 free 28.7G metaslab 124 offset 1f000004000 size 3fffff8000 spacemap 243 free 4.02G metaslab 125 offset 1f400000000 size 3fffffa000 spacemap 242 free 1.64G metaslab 126 offset 1f80000600 size 3fffffa000 spacemap 247 free 28.9G metaslab 127 offset 1fc0000200 size 3fffffe000 spacemap 245 free 3.00G metaslab 128 offset 200000800 size 3fffff8000 spacemap 245 free 2.16G</pre>	metaslab	116	offset 1d0000006000	size 3fffffa000	spacemap	233	free	1.59G
metaslab119offsetldc000004000size3fffffc000spacemap236free1.54Gmetaslab120offsetle000000000size40000000spacemap241free28.7Gmetaslab121offsetle400006000size3fffffa000spacemap240free2.55Gmetaslab122offsetle800002000size3fffffe000spacemap239free1.38Gmetaslab123offsetlec00008000size3fffff8000spacemap244free28.7Gmetaslab124offsetlf000004000size3fffffc000spacemap243free4.02Gmetaslab125offsetlf400000000size3fffffc000spacemap242free1.64Gmetaslab126offsetlf800006000size3fffffa000spacemap247free28.9Gmetaslab127offsetlfc00002000size3fffffe000spacemap246free3.00Gmetaslab128offset2000000800size3ffff8000spacemap245free2.16G	metaslab	117	offset 1d4000002000	size 3fffffe000	spacemap	238	free	25.9G
metaslab 120 offset 1e0000000000 size 400000000 spacemap 241 free 28.7G metaslab 121 offset 1e400006000 size 3fffffa000 spacemap 240 free 2.55G metaslab 122 offset 1e800002000 size 3fffffe000 spacemap 239 free 1.38G metaslab 123 offset 1ec00008000 size 3fffff8000 spacemap 244 free 28.7G metaslab 123 offset 1ec00008000 size 3fffff8000 spacemap 244 free 28.7G metaslab 124 offset 1f000004000 size 3fffff8000 spacemap 244 free 28.7G metaslab 125 offset 1f000004000 size 3fffffc000 spacemap 243 free 4.02G metaslab 126 offset 1f8000006000 size 3fffffa000 spacemap 247 free 28.9G metaslab 127 offset 1fc000002000	metaslab	118	offset 1d8000008000	size 3fffff8000	spacemap	237	free	2.92G
metaslab121offsetle4000006000size3fffffa000spacemap240free2.55Gmetaslab122offsetle800002000size3fffffe000spacemap239free1.38Gmetaslab123offsetlec00008000size3fffff8000spacemap244free28.7Gmetaslab124offsetlf000004000size3fffffc000spacemap243free4.02Gmetaslab125offsetlf400000000size3fffffa000spacemap242free1.64Gmetaslab126offsetlf800006000size3fffffa000spacemap247free28.9Gmetaslab127offsetlfc00002000size3fffff8000spacemap246free3.00Gmetaslab128offset20000008000size3fffff8000spacemap245free2.16G	metaslab	119	offset 1dc000004000	size 3ffffc000	spacemap	236	free	1.54G
metaslab122offset le800002000size 3fffffe000spacemap239free1.38Gmetaslab123offset lec00008000size 3fffff8000spacemap244free28.7Gmetaslab124offset lf000004000size 3fffffc000spacemap243free4.02Gmetaslab125offset 1f400000000size 3fffffc000spacemap242free1.64Gmetaslab126offset 1f800006000size 3fffffa000spacemap247free28.9Gmetaslab127offset 1fc00002000size 3fffffe000spacemap246free3.00Gmetaslab128offset 20000008000size 3fffff8000spacemap245free2.16G	metaslab	120	offset 1e0000000000	size 4000000000	spacemap	241	free	28.7G
metaslab 123 offset lec000008000 size 3fffff8000 spacemap 244 free 28.7G metaslab 124 offset 1f000004000 size 3fffffc000 spacemap 243 free 4.02G metaslab 125 offset 1f400000000 size 3fffffc000 spacemap 242 free 1.64G metaslab 126 offset 1f800006000 size 3fffffa000 spacemap 247 free 28.9G metaslab 127 offset 1fc00002000 size 3fffff8000 spacemap 246 free 3.00G metaslab 128 offset 20000008000 size 3fffff8000 spacemap 245 free 2.16G	metaslab	121	offset 1e4000006000	size 3fffffa000	spacemap	240	free	2.55G
metaslab 124 offset 1f0000004000 size 3fffffc000 spacemap 243 free 4.02G metaslab 125 offset 1f400000000 size 400000000 spacemap 242 free 1.64G metaslab 126 offset 1f8000006000 size 3fffffa000 spacemap 247 free 28.9G metaslab 127 offset 1fc00002000 size 3fffffe000 spacemap 246 free 3.00G metaslab 128 offset 20000008000 size 3fffff8000 spacemap 245 free 2.16G	metaslab	122	offset 1e8000002000	size 3fffffe000	spacemap	239	free	1.38G
metaslab 125 offset 1f400000000 size 400000000 spacemap 242 free 1.64G metaslab 126 offset 1f800006000 size 3fffffa000 spacemap 247 free 28.9G metaslab 127 offset 1fc00002000 size 3fffffe000 spacemap 246 free 3.00G metaslab 128 offset 20000008000 size 3fffff8000 spacemap 245 free 2.16G	metaslab	123	offset 1ec000008000	size 3fffff8000	spacemap	244	free	28.7G
metaslab 126 offset 1f8000006000 size 3fffffa000 spacemap 247 free 28.9G metaslab 127 offset 1fc000002000 size 3fffffe000 spacemap 246 free 3.00G metaslab 128 offset 200000008000 size 3fffff8000 spacemap 245 free 2.16G	metaslab	124	offset 1f0000004000	size 3ffffc000	spacemap	243	free	4.02G
metaslab 127 offset 1fc000002000 size 3fffffe000 spacemap 246 free 3.00G metaslab 128 offset 20000008000 size 3fffff8000 spacemap 245 free 2.16G	metaslab	125	offset 1f400000000	size 400000000	spacemap	242	free	1.64G
metaslab 128 offset 20000008000 size 3fffff8000 spacemap 245 free 2.16G	metaslab	126	offset 1f8000006000	size 3fffffa000	spacemap	247	free	28.9G
	metaslab	127	offset 1fc000002000	size 3fffffe000	spacemap	246	free	3.00G
metaslab 129 offset 204000004000 size 3fffffc000 spacemap 250 free 26.7G	metaslab	128	offset 20000008000	size 3fffff8000	spacemap	245	free	2.16G
	metaslab	129	offset 204000004000	size 3ffffc000	spacemap	250	free	26.7G

metaslab	130	offset 20800000000	size 4000000000	spacemap	249	free	2.63G
metaslab	131	offset 20c00006000	size 3fffffa000	spacemap	248	free	38.5G
metaslab	132	offset 21000002000	size 3ffffe000	spacemap	252	free	17.1G
metaslab	133	offset 214000008000	size 3fffff8000	spacemap	251	free	2.03G
metaslab	134	offset 218000004000	size 3ffffc000	spacemap	253	free	2.19G
metaslab	135	offset 21c00000000	size 4000000000	spacemap	255	free	43.2G
metaslab	136	offset 220000006000	size 3fffffa000	spacemap	254	free	2.22G
metaslab	137	offset 224000002000	size 3ffffe000	spacemap	256	free	1.58G
metaslab	138	offset 228000008000	size 3fffff8000	spacemap	259	free	25.6G
metaslab	139	offset 22c000004000	size 3fffffc000	spacemap	258	free	2.58G
metaslab	140	offset 23000000000	size 4000000000	spacemap	257	free	35.2G
metaslab	141	offset 234000006000	size 3ffffa000	spacemap	261	free	26.5G
metaslab	142	offset 238000002000	size 3fffffe000	spacemap	260	free	1.74G
metaslab	143	offset 23c000008000	size 3fffff8000	spacemap	262	free	1.92G
metaslab	144	offset 240000004000	size 3ffffc000	spacemap	265	free	25.5G
metaslab	145	offset 24400000000	size 4000000000	spacemap	264	free	3.25G
metaslab	146	offset 248000006000	size 3fffffa000	spacemap	263	free	2.17G
metaslab	147	offset 24c000002000	size 3ffffe000	spacemap	268	free	44.3G
metaslab	148	offset 25000008000	size 3fffff8000	spacemap	267	free	3.64G
metaslab	149	offset 254000004000	size 3fffffc000	spacemap	266	free	1.56G
metaslab	150	offset 25800000000	size 4000000000	spacemap	271	free	27.5G
metaslab	151	offset 25c000006000	size 3ffffa000	spacemap	270	free	2.11G
metaslab	152	offset 260000002000	size 3ffffe000	spacemap	269	free	1.91G
metaslab	153	offset 264000008000	size 3fffff8000	spacemap	274	free	26.9G
metaslab	154	offset 268000004000	size 3fffffc000	spacemap	273	free	3.66G
metaslab	155	offset 26c00000000	size 4000000000	spacemap	272	free	1.43G
metaslab	156	offset 27000006000	size 3fffffa000	spacemap	277	free	25.6G
metaslab	157	offset 274000002000	size 3ffffe000	spacemap	276	free	2.62G
metaslab	158	offset 278000008000	size 3fffff8000	spacemap	275	free	1.89G
metaslab	159	offset 27c000004000	size 3ffffc000	spacemap	280	free	27.4G
metaslab	160	offset 28000000000	size 4000000000	spacemap	279	free	3.38G
metaslab	161	offset 284000006000	size 3fffffa000	spacemap	278	free	1.39G
metaslab	162	offset 288000002000	size 3fffffe000	spacemap	283	free	26.4G
metaslab	163	offset 28c000008000	size 3fffff8000	spacemap	282	free	2.76G
metaslab	164	offset 290000004000	size 3ffffc000	spacemap	281	free	1.72G
metaslab	165	offset 29400000000	size 4000000000	spacemap	286	free	23.1G

metaslab	166	offset 298000006000	size 3fffffa000	spacemap	285	free	3.01G
metaslab	167	offset 29c000002000	size 3ffffe000	spacemap	284	free	48.2G
metaslab	168	offset 2a0000008000	size 3fffff8000	spacemap	288	free	26.0G
metaslab	169	offset 2a4000004000	size 3ffffc000	spacemap	287	free	2.25G
metaslab	170	offset 2a8000000000	size 4000000000	spacemap	289	free	38.5G
metaslab	171	offset 2ac000006000	size 3ffffa000	spacemap	291	free	27.0G
metaslab	172	offset 2b0000002000	size 3ffffe000	spacemap	290	free	40.5G
metaslab	173	offset 2b4000008000	size 3fffff8000	spacemap	292	free	993M
metaslab	174	offset 2b8000004000	size 3ffffc000	spacemap	294	free	18.7G
metaslab	175	offset 2bc00000000	size 400000000	spacemap	293	free	1.82G
metaslab	176	offset 2c000006000	size 3fffffa000	spacemap	295	free	1.64G
metaslab	177	offset 2c4000002000	size 3fffffe000	spacemap	298	free	3.25G
metaslab	178	offset 2c8000008000	size 3fffff8000	spacemap	297	free	2.57G
metaslab	179	offset 2cc000004000	size 3ffffc000	spacemap	296	free	1.36G
metaslab	180	offset 2d0000000000	size 400000000	spacemap	301	free	6.21G
metaslab	181	offset 2d4000006000	size 3fffffa000	spacemap	300	free	2.58G
metaslab	182	offset 2d8000002000	size 3ffffe000	spacemap	299	free	1.73G
metaslab	183	offset 2dc000008000	size 3fffff8000	spacemap	304	free	27.6G
metaslab	184	offset 2e0000004000	size 3ffffc000	spacemap	303	free	2.64G
metaslab	185	offset 2e4000000000	size 4000000000	spacemap	302	free	1.11G
metaslab	186	offset 2e8000006000	size 3fffffa000	spacemap	307	free	6.57G
metaslab	187	offset 2ec000002000	size 3ffffe000	spacemap	306	free	2.35G
metaslab	188	offset 2f000008000	size 3fffff8000	spacemap	305	free	1.52G
metaslab	189	offset 2f4000004000	size 3ffffc000	spacemap	310	free	6.39G
metaslab	190	offset 2f800000000	size 4000000000	spacemap	309	free	2.17G
metaslab	191	offset 2fc000006000	size 3fffffa000	spacemap	308	free	4.71G
metaslab	192	offset 30000002000	size 3ffffe000	spacemap	313	free	4.68G
metaslab	193	offset 30400008000	size 3fffff8000	spacemap	312	free	4.54G
metaslab	194	offset 308000004000	size 3ffffc000	spacemap	311	free	1.39G
metaslab	195	offset 30c00000000	size 4000000000	spacemap	316	free	3.55G
metaslab	196	offset 31000006000	size 3fffffa000	spacemap	315	free	2.23G
metaslab	197	offset 314000002000	size 3ffffe000	spacemap	314	free	1.38G
metaslab	198	offset 318000008000	size 3fffff8000	spacemap	319	free	25.4G
metaslab	199	offset 31c000004000	size 3ffffc000	spacemap	318	free	3.14G
metaslab	200	offset 32000000000	size 400000000	spacemap	317	free	39.3G
metaslab	201	offset 324000006000	size 3fffffa000	spacemap	321	free	26.6G

metaslab	202	offset 328000002000	size 3ffffe000	spacemap	320	free	1.99G
metaslab	203	offset 32c00008000	size 3fffff8000	spacemap	322	free	1.68G
metaslab	204	offset 33000004000	size 3ffffc000	spacemap	325	free	28.8G
metaslab	205	offset 33400000000	size 400000000	spacemap	324	free	2.95G
metaslab	206	offset 338000006000	size 3fffffa000	spacemap	323	free	1.78G
metaslab	207	offset 33c000002000	size 3ffffe000	spacemap	328	free	24.4G
metaslab	208	offset 34000008000	size 3fffff8000	spacemap	327	free	29.8G
metaslab	209	offset 344000004000	size 3ffffc000	spacemap	326	free	8.55G
metaslab	210	offset 34800000000	size 4000000000	spacemap	330	free	26.9G
metaslab	211	offset 34c00006000	size 3ffffa000	spacemap	329	free	1.99G
metaslab	212	offset 350000002000	size 3ffffe000	spacemap	331	free	1.83G
metaslab	213	offset 354000008000	size 3fffff8000	spacemap	334	free	26.7G
metaslab	214	offset 358000004000	size 3fffffc000	spacemap	333	free	2.35G
metaslab	215	offset 35c00000000	size 4000000000	spacemap	332	free	2.82G
metaslab	216	offset 36000006000	size 3fffffa000	spacemap	337	free	26.5G
metaslab	217	offset 364000002000	size 3fffffe000	spacemap	336	free	8.60G
metaslab	218	offset 368000008000	size 3fffff8000	spacemap	335	free	2.16G
metaslab	219	offset 36c000004000	size 3fffffc000	spacemap	340	free	21.6G
metaslab	220	offset 37000000000	size 4000000000	spacemap	339	free	7.50G
metaslab	221	offset 37400006000	size 3fffffa000	spacemap	338	free	1.52G
metaslab	222	offset 378000002000	size 3fffffe000	spacemap	343	free	42.7G
metaslab	223	offset 37c000008000	size 3fffff8000	spacemap	342	free	3.92G
metaslab	224	offset 38000004000	size 3ffffc000	spacemap	341	free	2.40G
metaslab	225	offset 38400000000	size 4000000000	spacemap	345	free	26.4G
metaslab	226	offset 388000006000	size 3fffffa000	spacemap	344	free	2.50G
metaslab	227	offset 38c000002000	size 3fffffe000	spacemap	346	free	32.9G
metaslab	228	offset 39000008000	size 3fffff8000	spacemap	348	free	44.8G
metaslab	229	offset 394000004000	size 3ffffc000	spacemap	347	free	1.67G
metaslab	230	offset 39800000000	size 4000000000	spacemap	349	free	2.25G
metaslab	231	offset 39c00006000	size 3ffffa000	spacemap	352	free	27.8G
metaslab	232	offset 3a0000002000	size 3fffffe000	spacemap	351	free	3.14G
metaslab	233	offset 3a4000008000	size 3fffff8000	spacemap	350	free	2.73G
metaslab	234	offset 3a8000004000	size 3fffffc000	spacemap	355	free	24.6G
metaslab	235	offset 3ac000000000	size 4000000000	spacemap	354	free	4.52G
metaslab	236	offset 3b000006000	size 3fffffa000	spacemap	353	free	1.96G
metaslab	237	offset 3b4000002000	size 3fffffe000	spacemap	358	free	34.8G

metaslab	238	offset 3b8000008000	size 3fffff8000	spacemap	357	free	2.18G	
metaslab	239	offset 3bc000004000	size 3ffffc000	spacemap	356	free	26.0G	
metaslab	240	offset 3c000000000	size 4000000000	spacemap	359	free	1.15G	
metaslab	241	offset 3c4000006000	size 3fffffa000	spacemap	362	free	20.4G	
metaslab	242	offset 3c8000002000	size 3ffffe000	spacemap	361	free	2.05G	
metaslab	243	offset 3cc000008000	size 3fffff8000	spacemap	360	free	642M	
metaslab	244	offset 3d0000004000	size 3ffffc000	spacemap	365	free	15.7G	
metaslab	245	offset 3d400000000	size 400000000	spacemap	364	free	1.97G	
metaslab	246	offset 3d8000006000	size 3fffffa000	spacemap	363	free	1.09G	
metaslab	247	offset 3dc000002000	size 3ffffe000	spacemap	368	free	2.12G	
metaslab	248	offset 3e000008000	size 3fffff8000	spacemap	367	free	1.25G	
metaslab	249	offset 3e4000004000	size 3fffffc000	spacemap	366	free	1.27G	
metaslab	250	offset 3e800000000	size 4000000000	spacemap	371	free	737M	
metaslab	251	offset 3ec000006000	size 3fffffa000	spacemap	370	free	1.31G	
metaslab	252	offset 3f000002000	size 3ffffe000	spacemap	369	free	1.43G	
metaslab	253	offset 3f4000008000	size 3fffff8000	spacemap	374	free	1.10G	
metaslab	254	offset 3f8000004000	size 3ffffc000	spacemap	373	free	1.12G	
metaslab	255	offset 3fc00000000	size 400000000	spacemap	372	free	1.06G	
metaslab	256	offset 40000006000	size 3fffffa000	spacemap	377	free	829M	
metaslab	257	offset 404000002000	size 3fffffe000	spacemap	376	free	820M	
metaslab	258	offset 408000008000	size 3fffff8000	spacemap	375	free	774M	
metaslab	259	offset 40c000004000	size 3ffffc000	spacemap	380	free	1014M	
metaslab	260	offset 41000000000	size 400000000	spacemap	379	free	648M	
metaslab	261	offset 414000006000	size 3fffffa000	spacemap	378	free	1.15G	
metaslab	262	offset 418000002000	size 3ffffe000	spacemap	383	free	1.04G	
metaslab	263	offset 41c000008000	size 3fffff8000	spacemap	382	free	1002M	
metaslab	264	offset 420000004000	size 3ffffc000	spacemap	381	free	955M	
metaslab	265	offset 42400000000	size 4000000000	spacemap	386	free	896M	
metaslab	266	offset 428000006000	size 3ffffa000	spacemap	385	free	986M	
metaslab	267	offset 42c000002000	size 3ffffe000	spacemap	384	free	1.15G	
metaslab	268	offset 43000008000	size 3fffff8000	spacemap	389	free	706M	
metaslab	269	offset 434000004000	size 3ffffc000	spacemap	388	free	1.10G	
metaslab	270	offset 43800000000	size 4000000000	spacemap	387	free	831M	
metaslab	271	offset 43c000006000	size 3fffffa000	spacemap	392	free	903M	
metaslab	272	offset 440000002000	size 3ffffe000	spacemap	391	free	777M	
metaslab	273	offset 444000008000	size 3fffff8000	spacemap	390	free	1.04G	

metaslab	274	offset 448000004000	size 3ffffc000	spacemap	393	free	794M	
metaslab	275	offset 44c000000000	size 4000000000	spacemap	394	free	695M	
metaslab	276	offset 450000006000	size 3fffffa000	spacemap	395	free	1.01G	
metaslab	277	offset 454000002000	size 3fffffe000	spacemap	398	free	899M	
metaslab	278	offset 458000008000	size 3fffff8000	spacemap	397	free	927M	
metaslab	279	offset 45c000004000	size 3fffffc000	spacemap	396	free	823M	
metaslab	280	offset 460000000000	size 4000000000	spacemap	401	free	821M	
metaslab	281	offset 464000006000	size 3fffffa000	spacemap	400	free	505M	
metaslab	282	offset 468000002000	size 3ffffe000	spacemap	399	free	926M	
metaslab	283	offset 46c000008000	size 3fffff8000	spacemap	404	free	960M	
metaslab	284	offset 470000004000	size 3ffffc000	spacemap	403	free	867M	
metaslab	285	offset 47400000000	size 4000000000	spacemap	402	free	509M	
metaslab	286	offset 478000006000	size 3fffffa000	spacemap	407	free	928M	
metaslab	287	offset 47c000002000	size 3fffffe000	spacemap	406	free	658M	
metaslab	288	offset 480000008000	size 3fffff8000	spacemap	405	free	931M	
metaslab	289	offset 484000004000	size 3fffffc000	spacemap	409	free	726M	
metaslab	290	offset 488000000000	size 4000000000	spacemap	408	free	583M	

B.2 'zdb –m' for a dRAID pool with segregation enabled

The following listing shows the status of the 43-drive hybrid dRAID described in section A.2.2. This dRAID was configured to use metadata isolation with segregation enabled. The listing includes an extra column of that describes the class assignment for each metaslab. The first 20% are reserved for the special class and will contain both metadata and small block categories. The normal class will be used first for data larger than 32KB in size. When the special class metaslabs are consumed, small block I/O will spill over into the normal class.

[root@ssu1_oss2]# zdb -m ssu_lost1										
Metaslabs:										
vdev	0	segregat	e							
metaslabs	291	offset		size	spacemap		free		class	
metaslab	0	offset	0	size 4000000000	spacemap	115	free	122G	special	
metaslab	1	offset	4000000000	size 4000000000	spacemap	114	free	208G	special	

metaslab	2	offset	8000001000	size 3fffff000	spacemap	113	free	221G	special
metaslab	3	offset	c000001000	size 3fffff000	spacemap	4	free	256G	special
metaslab	4	offset	1000002000	size 3ffffe000	spacemap	3	free	256G	special
metaslab	5	offset	14000000000	size 4000000000	spacemap	2	free	256G	special
metaslab	б	offset	18000000000	size 4000000000	spacemap	7	free	256G	special
metaslab	7	offset	1c00001000	size 3fffff000	spacemap	6	free	256G	special
metaslab	8	offset	2000001000	size 3fffff000	spacemap	5	free	256G	special
metaslab	9	offset	2400002000	size 3ffffe000	spacemap	0	free	256G	
metaslab	10	offset	28000000000	size 4000000000	spacemap	0	free	256G	
metaslab	11	offset	2c000000000	size 4000000000	spacemap	0	free	256G	
metaslab	12	offset	3000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	13	offset	34000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	14	offset	38000002000	size 3ffffe000	spacemap	0	free	256G	
metaslab	15	offset	3c000000000	size 4000000000	spacemap	0	free	256G	
metaslab	16	offset	40000000000	size 4000000000	spacemap	0	free	256G	
metaslab	17	offset	44000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	18	offset	48000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	19	offset	4c000002000	size 3ffffe000	spacemap	0	free	256G	
metaslab	20	offset	50000000000	size 4000000000	spacemap	0	free	256G	
metaslab	21	offset	54000000000	size 4000000000	spacemap	0	free	256G	
metaslab	22	offset	58000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	23	offset	5c000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	24	offset	6000002000	size 3fffffe000	spacemap	0	free	256G	
metaslab	25	offset	64000000000	size 4000000000	spacemap	0	free	256G	
metaslab	26	offset	68000000000	size 4000000000	spacemap	0	free	256G	
metaslab	27	offset	6c000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	28	offset	7000001000	size 3fffff000	spacemap	0	free	256G	
metaslab	29	offset	74000002000	size 3ffffe000	spacemap	0	free	256G	
metaslab	30	offset	78000000000	size 4000000000	spacemap	0	free	256G	
metaslab	31	offset	7c000000000	size 4000000000	spacemap	0	free	256G	
metaslab	32	offset	80000001000	size 3ffffff000	spacemap	0	free	256G	
metaslab	33	offset	84000001000	size 3ffffff000	spacemap	0	free	256G	
metaslab	34	offset	88000002000	size 3fffffe000	spacemap	0	free	256G	
metaslab	35	offset	8c000000000	size 4000000000	spacemap	0	free	256G	
metaslab	36	offset	90000000000	size 4000000000	spacemap	0	free	256G	
metaslab	37	offset	94000001000	size 3ffffff000	spacemap	0	free	256G	

metaalab 38 offset 9000001000 size 3fffff000 spacemap 0 free 2560 metaalab 40 offset a00000000 size 40000000 spacemap 0 free 2560 metaalab 41 offset a40000000 size fffff000 spacemap 0 free 2560 metaalab 42 offset a200001000 size fffff000 spacemap 0 free 2560 metaalab 44 offset b00000000 size fffff000 spacemap 0 free 2560 metaalab 45 offset b00000000 size fffff000 spacemap 0 free 2560 metaalab 49 offset c00000000 size fffff000 spacemap 0 free 2560 metaalab 50 offset c000000000											
metaslab 40 offset a000000000 size 400000000 spacemap 0 free 2566 metaslab 41 offset a00000000 size 300000000 spacemap 0 free 2566 metaslab 43 offset a00001000 size 3fffff000 spacemap 0 free 2566 metaslab 44 offset b00000000 size 3fffff000 spacemap 0 free 2566 metaslab 46 offset b0000000 size 3fffff000 spacemap 0 free 2566 metaslab 48 offset c00000000 size 3fffff000 spacemap 0 free 2566 metaslab 51 offset c00000000 size 3fffff000 spacemap 0 free 2566 metaslab 52 offset d000000000 <td>metaslab</td> <td>38</td> <td>offset 98</td> <td>000001000</td> <td>size 3</td> <td>Effff000</td> <td>spacemap</td> <td>0</td> <td>free</td> <td>256G</td> <td></td>	metaslab	38	offset 98	000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab 41 offset a400000000 size 3fffff000 spacemap 0 free 2566 metaslab 42 offset a200001000 size 3fffff000 spacemap 0 free 2566 metaslab 44 offset b400000000 size 3fffff000 spacemap 0 free 2566 metaslab 45 offset b400000000 size 400000000 spacemap 0 free 2566 metaslab 46 offset b400000000 size 400000000 spacemap 0 free 2566 metaslab 48 offset c00000100 size 3fffff000 spacemap 0 free 2566 metaslab 50 offset c00000000 size 3fffff000 spacemap 0 free 2566 metaslab 51 offset c00000000 size 3fffff000 spacemap 0 free 2566	metaslab	39	offset 9c	000002000	size 3	Efffe000	spacemap	0	free	256G	
metaslab 42 offset a800001000 size 3fffff000 spacemap 0 free 2560 metaslab 43 offset b00000000 size 3fffff000 spacemap 0 free 2560 metaslab 45 offset b00000000 size 400000000 spacemap 0 free 2560 metaslab 46 offset b00000100 size 400000000 spacemap 0 free 2560 metaslab 48 offset c00000100 size 3fffff000 spacemap 0 free 2560 metaslab 50 offset c00000000 size 3fffff000 spacemap 0 free 2560 metaslab 53 offset c00000000 size 3fffff000 spacemap 0 free 2560 metaslab 54 offset c000000000 <td>metaslab</td> <td>40</td> <td>offset a0</td> <td>0000000000</td> <td>size 40</td> <td>00000000000</td> <td>spacemap</td> <td>0</td> <td>free</td> <td>256G</td> <td></td>	metaslab	40	offset a0	0000000000	size 40	00000000000	spacemap	0	free	256G	
metaslab 43 offset ac00001000 size 3fffff000 spacemap 0 free 256G metaslab 44 offset b00000000 size 3fffff000 spacemap 0 free 256G metaslab 46 offset b00000000 size 400000000 spacemap 0 free 256G metaslab 46 offset b00000000 size 3ffff1000 spacemap 0 free 256G metaslab 48 offset c400000000 size 3ffff1000 spacemap 0 free 256G metaslab 50 offset c400000000 size 3fffff000 spacemap 0 free 256G metaslab 52 offset d00000000 size 3fffff000 spacemap 0 free 256G metaslab 55 offset d000000000<	metaslab	41	offset a4	0000000000	size 40	00000000000000	spacemap	0	free	256G	
metaslab 44 offset b000002000 size 3ffffe000 spacemap 0 free 256G metaslab 45 offset b00000000 size 400000000 spacemap 0 free 256G metaslab 47 offset b00000100 size 3fffff000 spacemap 0 free 256G metaslab 48 offset c00000100 size 3ffff000 spacemap 0 free 256G metaslab 50 offset c00000100 size 3fffff000 spacemap 0 free 256G metaslab 51 offset c00000100 size 3fffff000 spacemap 0 free 256G metaslab 54 offset d0000000 size 3fffff000 spacemap 0 free 256G metaslab 54 offset d00000000	metaslab	42	offset a8	000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab 45 offset b400000000 size 400000000 spacemap 0 free 2569 metaslab 46 offset b80000000 size 30000000 spacemap 0 free 2560 metaslab 48 offset c00000100 size 3ffff000 spacemap 0 free 2560 metaslab 49 offset c00000000 size 3ffff000 spacemap 0 free 2560 metaslab 50 offset c00000000 size 400000000 spacemap 0 free 2560 metaslab 51 offset d00000100 size 3ffff000 spacemap 0 free 2560 metaslab 53 offset d00000000 size 3ffff000 spacemap 0 free 2560 metaslab 56 offset e000000000	metaslab	43	offset ac	:000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab 46 offset b800000000 size 400000000 spacemap 0 free 2560 metaslab 48 offset c00000100 size 3fffff000 spacemap 0 free 2560 metaslab 49 offset c40000000 size 3fffff000 spacemap 0 free 2560 metaslab 50 offset c40000000 size 400000000 spacemap 0 free 2560 metaslab 51 offset c600000000 size 3fffff000 spacemap 0 free 2560 metaslab 53 offset d40000100 size 3fffff000 spacemap 0 free 2560 metaslab 54 offset d800002000 size 3fffff000 spacemap 0 free 2560 metaslab 55 offset e000000000<	metaslab	44	offset b0	000002000	size 3	Efffe000	spacemap	0	free	256G	
metaslab 47 offset b000001000 size 3fffff000 spacemap 0 free 256G metaslab 48 offset c00001000 size 3fffff000 spacemap 0 free 256G metaslab 49 offset c0000000 size 3fffff000 spacemap 0 free 256G metaslab 50 offset c00000000 size 40000000 spacemap 0 free 256G metaslab 51 offset d00001000 size 3ffff000 spacemap 0 free 256G metaslab 54 offset d0000000 size 3fffff000 spacemap 0 free 256G metaslab 55 offset d00001000 size 3fffff000 spacemap 0 free 256G metaslab 57 offset e000000000	metaslab	45	offset b4	0000000000	size 40	00000000000	spacemap	0	free	256G	
metaslab 48 offset c0000001000 size 3fffff000 spacemap 0 free 2566 metaslab 49 offset c80000000 size 3f000000 spacemap 0 free 2566 metaslab 51 offset c80000000 size 400000000 spacemap 0 free 2566 metaslab 52 offset d00000100 size 3fffff000 spacemap 0 free 2566 metaslab 53 offset d00000000 size 3fffff000 spacemap 0 free 2566 metaslab 54 offset d00000000 size 3fffff000 spacemap 0 free 2566 metaslab 55 offset e00000000 size 3fffff000 spacemap 0 free 2566 metaslab 57 offset e000000000 <td>metaslab</td> <td>46</td> <td>offset b8</td> <td>0000000000</td> <td>size 40</td> <td>00000000000000</td> <td>spacemap</td> <td>0</td> <td>free</td> <td>256G</td> <td></td>	metaslab	46	offset b8	0000000000	size 40	00000000000000	spacemap	0	free	256G	
metaslab 49 offset c400000200 size 3fffffe000 spacemap 0 free 256G metaslab 50 offset c200000000 size 400000000 spacemap 0 free 256G metaslab 51 offset c200000000 size 400000000 spacemap 0 free 256G metaslab 53 offset d400001000 size 3fffff000 spacemap 0 free 256G metaslab 53 offset d400000000 size 3fffff000 spacemap 0 free 256G metaslab 56 offset d00000000 size 3fffff000 spacemap 0 free 256G metaslab 57 offset e400000000 size 3fffff000 spacemap 0 free 256G metaslab 58 offset e000000000 size 3fffff000 spacemap 123 free 1.436 norm	metaslab	47	offset bc	:000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab 50 offset c800000000 size 400000000 spacemap 0 free 256G metaslab 51 offset d00000100 size 3fffff000 spacemap 0 free 256G metaslab 52 offset d400001000 size 3fffff000 spacemap 0 free 256G metaslab 54 offset d400000000 size 3fffff000 spacemap 0 free 256G metaslab 55 offset d00000000 size 3fffff000 spacemap 0 free 256G metaslab 56 offset e400000000 size 3fffff000 spacemap 0 free 256G metaslab 58 offset e400000000 size 3fffff000 spacemap 0 free 256G metaslab 58 offset e400000000 size 3fffff000 spacemap 123 free 1.43G normal	metaslab	48	offset c0	000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab 51 offset cc00000000 size 400000000 spacemap 0 free 256G metaslab 52 offset d00000100 size 3fffff000 spacemap 0 free 256G metaslab 53 offset d00000000 size 3fffff000 spacemap 0 free 256G metaslab 54 offset d00000000 size 3fffff000 spacemap 0 free 256G metaslab 56 offset e00000000 size 40000000 spacemap 0 free 256G metaslab 56 offset e00000000 size 3fffff000 spacemap 0 free 256G metaslab 59 offset e00000000 size 3fffff000 spacemap 125 free 1.43G normal metaslab 60 offset f00000000 size 3fffff000 spacemap 126 free 1.56G normal </td <td>metaslab</td> <td>49</td> <td>offset c4</td> <td>000002000</td> <td>size 3</td> <td>Efffe000</td> <td>spacemap</td> <td>0</td> <td>free</td> <td>256G</td> <td></td>	metaslab	49	offset c4	000002000	size 3	Efffe000	spacemap	0	free	256G	
metaslab 52 offset d000001000 size 3fffff000 spacemap 0 free 256G metaslab 53 offset d400000000 size 3fffff000 spacemap 0 free 256G metaslab 54 offset d80000000 size 3fffff000 spacemap 0 free 256G metaslab 55 offset d00000000 size 400000000 spacemap 0 free 256G metaslab 56 offset e000000000 size 3fffff000 spacemap 0 free 256G metaslab 57 offset e400000100 size 3fffff000 spacemap 123 free 7.706 normal metaslab 59 offset f000000000 size 3fffff000 spacemap 126 free 1.53G normal metaslab 61 offset f000000000 size 3fffff000 spacemap 126 free 1.66G <t< td=""><td>metaslab</td><td>50</td><td>offset c8</td><td>0000000000</td><td>size 40</td><td>000000000000</td><td>spacemap</td><td>0</td><td>free</td><td>256G</td><td></td></t<>	metaslab	50	offset c8	0000000000	size 40	000000000000	spacemap	0	free	256G	
metaslab 53 offset d400001000 size 3fffff000 spacemap 0 free 256G metaslab 55 offset dc0000000 size 400000000 spacemap 0 free 256G metaslab 56 offset dc0000000 size 40000000 spacemap 0 free 256G metaslab 56 offset e00000000 size 3fffff000 spacemap 0 free 256G metaslab 58 offset e400000000 size 3fffff000 spacemap 10 free 256G metaslab 58 offset e400000000 size 3fffff000 spacemap 125 free 1.43G normal metaslab 60 offset f000000000 size 3ffffe000 spacemap 124 free 1.58G normal metaslab 61 offset f400000000 size 3fffff000 spacemap 127 free 1.66G <td< td=""><td>metaslab</td><td>51</td><td>offset cc</td><td>00000000000</td><td>size 40</td><td>0000000000</td><td>spacemap</td><td>0</td><td>free</td><td>256G</td><td></td></td<>	metaslab	51	offset cc	00000000000	size 40	0000000000	spacemap	0	free	256G	
metaslab 54 offset d8000002000 size 3fffffe000 spacemap 0 free 256G metaslab 55 offset d00000000 size 400000000 spacemap 0 free 256G metaslab 56 offset e400001000 size 40000000 spacemap 0 free 256G metaslab 57 offset e400001000 size 3fffff000 spacemap 0 free 256G metaslab 58 offset e400001000 size 3fffff000 spacemap 123 free 7.70G normal metaslab 59 offset e00000000 size 3fffff000 spacemap 124 free 1.43G normal metaslab 60 offset f00000000 size 3fffff000 spacemap 126 free 1.27G normal metaslab 61 offset f00000000 size 3fffff000 spacemap 127 free 1.66G	metaslab	52	offset d0	000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab 55 offset dc00000000 size 400000000 spacemap 0 free 256G metaslab 56 offset e00000000 size 3fffff000 spacemap 0 free 256G metaslab 57 offset e400001000 size 3fffff000 spacemap 0 free 256G metaslab 58 offset e800008000 size 3fffff000 spacemap 123 free 7.70G normal metaslab 59 offset e800000000 size 3ffffc000 spacemap 125 free 1.43G normal metaslab 60 offset f000000000 size 3ffffa000 spacemap 126 free 1.27G normal metaslab 61 offset f800002000 size 3fffffe000 spacemap 128 free 2.05G normal metaslab 63 offset f000000000 size 3fffff000 spacemap 128 free 2.05G	metaslab	53	offset d4	000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab 56 offset e000000000 size 400000000 spacemap 0 free 256G metaslab 57 offset e400001000 size 3fffff000 spacemap 0 free 256G metaslab 58 offset e800008000 size 3fffff000 spacemap 123 free 7.70G normal metaslab 59 offset e00000000 size 3ffff6000 spacemap 125 free 1.43G normal metaslab 60 offset f000000000 size 3ffff6000 spacemap 124 free 1.58G normal metaslab 61 offset f00000000 size 3ffff8000 spacemap 127 free 1.66G normal metaslab 62 offset f000000000 size 3ffff8000 spacemap 129 free 2.03G normal metaslab 63 offset f000000000 size 3ffff8000 spacemap 130 free 2.01G </td <td>metaslab</td> <td>54</td> <td>offset d8</td> <td>000002000</td> <td>size 3</td> <td>Efffe000</td> <td>spacemap</td> <td>0</td> <td>free</td> <td>256G</td> <td></td>	metaslab	54	offset d8	000002000	size 3	Efffe000	spacemap	0	free	256G	
metaslab57offsete400001000size3fffff000spacemap0free256Gmetaslab58offsete800008000size3fffff8000spacemap123free7.70Gnormalmetaslab59offsetec00004000size3fffff000spacemap125free1.43Gnormalmetaslab60offsetf00000000size3fffff000spacemap124free1.58Gnormalmetaslab61offsetf400000000size3fffff6000spacemap126free1.27Gnormalmetaslab62offsetf600002000size3fffffe000spacemap128free2.05Gnormalmetaslab63offsetf000000000size3fffffe000spacemap129free2.23Gnormalmetaslab64offset1000000000size3fffffe000spacemap130free2.01Gnormalmetaslab65offset10400000000size3fffffe000spacemap131free1.59Gnormalmetaslab66offset1000002000size3fffffe000spacemap132free1.29Gnormalmetaslab67offset1000002000size3fffffe000spacemap133free1.29Gnormalmetaslab68offset11000008000size3fffffe000spacemap133	metaslab	55	offset dc	:0000000000	size 40	000000000000	spacemap	0	free	256G	
metaslab58offsete800008000size3ffff8000spacemap123free7.70Gnormalmetaslab59offsetec00004000size3fffffc000spacemap125free1.43Gnormalmetaslab60offsetf000000000size3fffffa000spacemap124free1.58Gnormalmetaslab61offsetf4000006000size3fffffa000spacemap126free1.27Gnormalmetaslab62offsetf800002000size3fffffa000spacemap127free1.66Gnormalmetaslab63offsetfc00000000size3fffffa000spacemap128free2.05Gnormalmetaslab64offset1000000000size3fffffa000spacemap130free2.01Gnormalmetaslab65offset10400000000size3fffffa000spacemap131free1.59Gnormalmetaslab66offset1000002000size3fffffa000spacemap132free1.08Gnormalmetaslab68offset11000008000size3fffffa000spacemap133free1.29Gnormalmetaslab69offset11400004000size3fffffa000spacemap133free1.29Gnormalmetaslab69offset11400004000size3fffffa000spacemap1	metaslab	56	offset e0	0000000000	size 40	00000000000	spacemap	0	free	256G	
metaslab59offsetec000004000size3ffffc000spacemap125free1.43Gnormalmetaslab60offsetf000000000size400000000spacemap124free1.58Gnormalmetaslab61offsetf400006000size3fffffa000spacemap126free1.27Gnormalmetaslab62offsetf800002000size3fffffe000spacemap127free1.66Gnormalmetaslab63offsetfc00000000size3fffffe000spacemap129free2.03Gnormalmetaslab64offset10000000000size3fffffe000spacemap130free2.01Gnormalmetaslab65offset10400000000size3fffffe000spacemap131free1.59Gnormalmetaslab66offset10000002000size3fffffe000spacemap132free1.08Gnormalmetaslab68offset11000008000size3fffffe000spacemap133free1.29Gnormalmetaslab69offset11400004000size3fffffe000spacemap135free1.52Gnormalmetaslab70offset11600000000size3fffffe000spacemap135free1.52Gnormalmetaslab71offset112000002000size3fffffe000spacemap <t< td=""><td>metaslab</td><td>57</td><td>offset e4</td><td>000001000</td><td>size 3</td><td>Effff000</td><td>spacemap</td><td>0</td><td>free</td><td>256G</td><td></td></t<>	metaslab	57	offset e4	000001000	size 3	Effff000	spacemap	0	free	256G	
metaslab60offsetf000000000size400000000spacemap124free1.58Gnormalmetaslab61offsetf400006000size3ffffa000spacemap126free1.27Gnormalmetaslab62offsetf800002000size3fffffe000spacemap127free1.66Gnormalmetaslab63offsetfc00008000size3fffff8000spacemap128free2.05Gnormalmetaslab64offset10000004000size3fffffc000spacemap130free2.01Gnormalmetaslab65offset10400000000size3fffffa000spacemap131free1.59Gnormalmetaslab66offset10800006000size3fffffa000spacemap132free1.08Gnormalmetaslab67offset1000002000size3fffff8000spacemap133free1.29Gnormalmetaslab68offset11000008000size3fffff8000spacemap133free1.29Gnormalmetaslab69offset11400004000size3fffffc000spacemap134free1.59Gnormalmetaslab70offset11800000000size3fffffc000spacemap135free1.52Gnormalmetaslab71offset112000002000size3fffffa000spacemap <td< td=""><td>metaslab</td><td>58</td><td>offset e8</td><td>000008000</td><td>size 3</td><td>Efff8000</td><td>spacemap</td><td>123</td><td>free</td><td>7.70G</td><td>normal</td></td<>	metaslab	58	offset e8	000008000	size 3	Efff8000	spacemap	123	free	7.70G	normal
metaslab61offsetf400006000size3ffffa000spacemap126free1.27Gnormalmetaslab62offsetf800002000size3fffffe000spacemap127free1.66Gnormalmetaslab63offsetfc00008000size3fffffe000spacemap128free2.05Gnormalmetaslab64offset10000004000size3fffffc000spacemap129free2.23Gnormalmetaslab65offset10400000000size3fffffa000spacemap130free2.01Gnormalmetaslab66offset10800006000size3fffffa000spacemap131free1.59Gnormalmetaslab67offset10000002000size3fffffe000spacemap132free1.08Gnormalmetaslab68offset11000008000size3fffffe000spacemap133free1.29Gnormalmetaslab69offset11400004000size3fffffe000spacemap134free1.59Gnormalmetaslab70offset11800000000size3fffffe000spacemap135free1.52Gnormalmetaslab71offset11c00006000size3fffffa000spacemap136free949Mnormalmetaslab72offset12000002000size3fffffe000spacemap <t< td=""><td>metaslab</td><td>59</td><td>offset ec</td><td>000004000</td><td>size 3</td><td>Efffc000</td><td>spacemap</td><td>125</td><td>free</td><td>1.43G</td><td>normal</td></t<>	metaslab	59	offset ec	000004000	size 3	Efffc000	spacemap	125	free	1.43G	normal
metaslab62offsetf8000002000size3fffffe000spacemap127free1.66Gnormalmetaslab63offsetfc00008000size3fffff8000spacemap128free2.05Gnormalmetaslab64offset10000004000size3fffffc000spacemap129free2.23Gnormalmetaslab65offset10400000000size3fffffc000spacemap130free2.01Gnormalmetaslab66offset10800006000size3fffffa000spacemap131free1.59Gnormalmetaslab67offset10000002000size3fffffe000spacemap132free1.08Gnormalmetaslab68offset11000008000size3fffffe000spacemap133free1.29Gnormalmetaslab69offset114000004000size3fffffc000spacemap134free1.59Gnormalmetaslab70offset11800000000size3fffffc000spacemap135free1.52Gnormalmetaslab71offset11200000600size3fffffa000spacemap136free949Mnormalmetaslab72offset12000002000size3fffffa000spacemap136free1.59Gnormalmetaslab72offset12000002000size3fffffa000spacemap <td>metaslab</td> <td>60</td> <td>offset f0</td> <td>00000000000</td> <td>size 40</td> <td>000000000000</td> <td>spacemap</td> <td>124</td> <td>free</td> <td>1.58G</td> <td>normal</td>	metaslab	60	offset f0	00000000000	size 40	000000000000	spacemap	124	free	1.58G	normal
metaslab63offsetfc000008000size3fffff8000spacemap128free2.05Gnormalmetaslab64offset10000004000size3fffffc000spacemap129free2.23Gnormalmetaslab65offset10400000000size400000000spacemap130free2.01Gnormalmetaslab66offset10800006000size3ffffa000spacemap131free1.59Gnormalmetaslab67offset1000002000size3fffffe000spacemap133free1.29Gnormalmetaslab68offset11000008000size3fffffc000spacemap133free1.29Gnormalmetaslab69offset11400004000size3fffffc000spacemap134free1.59Gnormalmetaslab70offset11800000000size3fffffa000spacemap135free1.52Gnormalmetaslab71offset112000002000size3fffffa000spacemap136free949Mnormalmetaslab72offset12000002000size3fffffe000spacemap137free1.59Gnormal	metaslab	61	offset f4	000006000	size 3	Effffa000	spacemap	126	free	1.27G	normal
metaslab64offset 10000004000size 3fffffc000spacemap129free2.23Gnormalmetaslab65offset 1040000000size 40000000spacemap130free2.01Gnormalmetaslab66offset 10800006000size 3fffffa000spacemap131free1.59Gnormalmetaslab67offset 1000002000size 3fffffe000spacemap132free1.08Gnormalmetaslab68offset 11000008000size 3fffffe000spacemap133free1.29Gnormalmetaslab69offset 11400004000size 3fffffc000spacemap134free1.59Gnormalmetaslab70offset 11800000000size 3fffffa000spacemap135free1.52Gnormalmetaslab71offset 112000006000size 3fffffa000spacemap136free949Mnormalmetaslab72offset 12000002000size 3fffffe000spacemap137free1.59Gnormal	metaslab	62	offset f8	000002000	size 3	Efffe000	spacemap	127	free	1.66G	normal
metaslab65offset 10400000000size 400000000spacemap130free2.01Gnormalmetaslab66offset 10800006000size 3fffffa000spacemap131free1.59Gnormalmetaslab67offset 10c00002000size 3fffffe000spacemap132free1.08Gnormalmetaslab68offset 11000008000size 3fffff8000spacemap133free1.29Gnormalmetaslab69offset 11400004000size 3fffffc000spacemap134free1.59Gnormalmetaslab70offset 11800000000size 3fffffa000spacemap135free1.52Gnormalmetaslab71offset 11c00006000size 3fffffa000spacemap136free949Mnormalmetaslab72offset 12000002000size 3fffffe000spacemap137free1.59Gnormal	metaslab	63	offset fc	000008000	size 3	Efff8000	spacemap	128	free	2.05G	normal
metaslab66offset 108000006000size 3fffffa000spacemap131free1.59Gnormalmetaslab67offset 10c00002000size 3fffffe000spacemap132free1.08Gnormalmetaslab68offset 11000008000size 3fffff8000spacemap133free1.29Gnormalmetaslab69offset 114000004000size 3fffffc000spacemap134free1.59Gnormalmetaslab70offset 11800000000size 400000000spacemap135free1.52Gnormalmetaslab71offset 11c00006000size 3fffffa000spacemap136free949Mnormalmetaslab72offset 12000002000size 3fffffe000spacemap137free1.59Gnormal	metaslab	64	offset 100	000004000	size 3	Efffc000	spacemap	129	free	2.23G	normal
metaslab67offset 10c00002000size 3fffffe000spacemap132free1.08Gnormalmetaslab68offset 11000008000size 3fffff8000spacemap133free1.29Gnormalmetaslab69offset 11400004000size 3fffffc000spacemap134free1.59Gnormalmetaslab70offset 11800000000size 400000000spacemap135free1.52Gnormalmetaslab71offset 11c00006000size 3fffffa000spacemap136free949Mnormalmetaslab72offset 12000002000size 3fffffe000spacemap137free1.59Gnormal	metaslab	65	offset 104	0000000000	size 40	00000000000	spacemap	130	free	2.01G	normal
metaslab68offset 11000008000size 3fffff8000spacemap133free1.29Gnormalmetaslab69offset 11400004000size 3fffffc000spacemap134free1.59Gnormalmetaslab70offset 11800000000size 400000000spacemap135free1.52Gnormalmetaslab71offset 11c00006000size 3fffffa000spacemap136free949Mnormalmetaslab72offset 12000002000size 3fffffe000spacemap137free1.59Gnormal	metaslab	66	offset 108	000006000	size 3	Effffa000	spacemap	131	free	1.59G	normal
metaslab 69 offset 114000004000 size 3fffffc000 spacemap 134 free 1.59G normal metaslab 70 offset 11800000000 size 400000000 spacemap 135 free 1.52G normal metaslab 71 offset 11c00006000 size 3fffffa000 spacemap 136 free 949M normal metaslab 72 offset 12000002000 size 3fffffe000 spacemap 137 free 1.59G normal	metaslab	67	offset 10c	000002000	size 3	Efffe000	spacemap	132	free	1.08G	normal
metaslab 70 offset 118000000000 size 400000000 spacemap 135 free 1.52G normal metaslab 71 offset 11c00006000 size 3fffffa000 spacemap 136 free 949M normal metaslab 72 offset 120000002000 size 3fffffe000 spacemap 137 free 1.59G normal	metaslab	68	offset 110	00080000	size 3	Efff8000	spacemap	133	free	1.29G	normal
metaslab 71 offset 11c000006000 size 3fffffa000 spacemap 136 free 949M normal metaslab 72 offset 120000002000 size 3fffffe000 spacemap 137 free 1.59G normal	metaslab	69	offset 114	000004000	size 3	Efffc000	spacemap	134	free	1.59G	normal
metaslab 72 offset 120000002000 size 3fffffe000 spacemap 137 free 1.59G normal	metaslab	70	offset 118	0000000000	size 40	000000000	spacemap	135	free	1.52G	normal
	metaslab	71	offset 11c	000006000	size 3	Effffa000	spacemap	136	free	949M	normal
metaslab 73 offset 124000008000 size 3fffff8000 spacemap 138 free 14.5G normal	metaslab	72	offset 120	000002000	size 3	Efffe000	spacemap	137	free	1.59G	normal
	metaslab	73	offset 124	0008000	size 3	Efff8000	spacemap	138	free	14.5G	normal

metaslab	74	offset 128000004000	size 3fffffc000	spacemap	139	free	1.85G	normal	
metaslab	75	offset 12c00000000	size 400000000	spacemap	141	free	24.1G	normal	
metaslab	76	offset 13000006000	size 3fffffa000	spacemap	140	free	1.07G	normal	
metaslab	77	offset 134000002000	size 3ffffe000	spacemap	142	free	19.9G	normal	
metaslab	78	offset 138000008000	size 3fffff8000	spacemap	144	free	14.9G	normal	
metaslab	79	offset 13c000004000	size 3ffffc000	spacemap	143	free	1.49G	normal	
metaslab	80	offset 140000000000	size 400000000	spacemap	145	free	22.2G	normal	
metaslab	81	offset 144000006000	size 3ffffa000	spacemap	146	free	1.11G	normal	
metaslab	82	offset 148000002000	size 3ffffe000	spacemap	147	free	1.34G	normal	
metaslab	83	offset 14c000008000	size 3fffff8000	spacemap	148	free	36.2G	normal	
metaslab	84	offset 150000004000	size 3ffffc000	spacemap	150	free	23.0G	normal	
metaslab	85	offset 15400000000	size 4000000000	spacemap	149	free	946M	normal	
metaslab	86	offset 158000006000	size 3fffffa000	spacemap	151	free	38.8G	normal	
metaslab	87	offset 15c000002000	size 3ffffe000	spacemap	152	free	1.04G	normal	
metaslab	88	offset 16000008000	size 3fffff8000	spacemap	153	free	25.3G	normal	
metaslab	89	offset 164000004000	size 3ffffc000	spacemap	154	free	1.66G	normal	
metaslab	90	offset 168000000000	size 4000000000	spacemap	155	free	34.4G	normal	
metaslab	91	offset 16c000006000	size 3ffffa000	spacemap	156	free	1.51G	normal	
metaslab	92	offset 170000002000	size 3ffffe000	spacemap	157	free	27.5G	normal	
metaslab	93	offset 174000008000	size 3fffff8000	spacemap	159	free	23.8G	normal	
metaslab	94	offset 178000004000	size 3fffffc000	spacemap	158	free	1.08G	normal	
metaslab	95	offset 17c00000000	size 4000000000	spacemap	160	free	1.54G	normal	
metaslab	96	offset 180000006000	size 3fffffa000	spacemap	161	free	1.46G	normal	
metaslab	97	offset 184000002000	size 3ffffe000	spacemap	162	free	24.6G	normal	
metaslab	98	offset 188000008000	size 3fffff8000	spacemap	163	free	1.07G	normal	
metaslab	99	offset 18c000004000	size 3ffffc000	spacemap	165	free	43.3G	normal	
metaslab	100	offset 19000000000	size 4000000000	spacemap	164	free	633M	normal	
metaslab	101	offset 194000006000	size 3fffffa000	spacemap	166	free	1.27G	normal	
metaslab	102	offset 198000002000	size 3ffffe000	spacemap	167	free	20.8G	normal	
metaslab	103	offset 19c00008000	size 3fffff8000	spacemap	169	free	24.3G	normal	
metaslab	104	offset 1a0000004000	size 3fffffc000	spacemap	168	free	11.4G	normal	
metaslab	105	offset 1a4000000000	size 4000000000	spacemap	170	free	35.3G	normal	
metaslab	106	offset 1a8000006000	size 3fffffa000	spacemap	171	free	1.45G	normal	
metaslab	107	offset 1ac000002000	size 3fffffe000	spacemap	172	free	24.3G	normal	
metaslab	108	offset 1b000008000	size 3fffff8000	spacemap	174	free	36.1G	normal	
metaslab	109	offset 1b4000004000	size 3ffffc000	spacemap	173	free	1.54G	normal	

metaslab	110	offset 1b800000000	size 4000000000	spacemap	175	free	28.0G	normal	
metaslab	111	offset 1bc000006000	size 3fffffa000	spacemap	176	free	1.43G	normal	
metaslab	112	offset 1c0000002000	size 3ffffe000	spacemap	177	free	35.6G	normal	
metaslab	113	offset 1c4000008000	size 3fffff8000	spacemap	178	free	1.09G	normal	
metaslab	114	offset 1c8000004000	size 3ffffc000	spacemap	179	free	1.43G	normal	
metaslab	115	offset 1cc000000000	size 4000000000	spacemap	181	free	28.4G	normal	
metaslab	116	offset 1d0000006000	size 3ffffa000	spacemap	180	free	1.21G	normal	
metaslab	117	offset 1d4000002000	size 3ffffe000	spacemap	182	free	22.7G	normal	
metaslab	118	offset 1d8000008000	size 3fffff8000	spacemap	184	free	45.0G	normal	
metaslab	119	offset 1dc000004000	size 3ffffc000	spacemap	183	free	1.63G	normal	
metaslab	120	offset 1e0000000000	size 400000000	spacemap	185	free	19.0G	normal	
metaslab	121	offset 1e4000006000	size 3ffffa000	spacemap	186	free	22.6G	normal	
metaslab	122	offset 1e8000002000	size 3ffffe000	spacemap	188	free	29.7G	normal	
metaslab	123	offset 1ec000008000	size 3fffff8000	spacemap	187	free	1.62G	normal	
metaslab	124	offset 1f0000004000	size 3ffffc000	spacemap	189	free	26.4G	normal	
metaslab	125	offset 1f400000000	size 4000000000	spacemap	190	free	1.45G	normal	
metaslab	126	offset 1f8000006000	size 3ffffa000	spacemap	191	free	25.4G	normal	
metaslab	127	offset 1fc000002000	size 3fffffe000	spacemap	193	free	32.9G	normal	
metaslab	128	offset 20000008000	size 3fffff8000	spacemap	192	free	1.02G	normal	
metaslab	129	offset 204000004000	size 3ffffc000	spacemap	194	free	21.2G	normal	
metaslab	130	offset 20800000000	size 4000000000	spacemap	195	free	17.8G	normal	
metaslab	131	offset 20c00006000	size 3ffffa000	spacemap	196	free	22.8G	normal	
metaslab	132	offset 21000002000	size 3fffffe000	spacemap	197	free	1.47G	normal	
metaslab	133	offset 214000008000	size 3fffff8000	spacemap	198	free	1.22G	normal	
metaslab	134	offset 218000004000	size 3ffffc000	spacemap	199	free	31.4G	normal	
metaslab	135	offset 21c00000000	size 4000000000	spacemap	200	free	1.20G	normal	
metaslab	136	offset 22000006000	size 3ffffa000	spacemap	201	free	24.0G	normal	
metaslab	137	offset 224000002000	size 3ffffe000	spacemap	202	free	1.38G	normal	
metaslab	138	offset 228000008000	size 3fffff8000	spacemap	203	free	22.8G	normal	
metaslab	139	offset 22c000004000	size 3ffffc000	spacemap	204	free	1.40G	normal	
metaslab	140	offset 23000000000	size 4000000000	spacemap	206	free	29.0G	normal	
metaslab	141	offset 234000006000	size 3ffffa000	spacemap	205	free	1.60G	normal	
metaslab	142	offset 238000002000	size 3fffffe000	spacemap	207	free	22.2G	normal	
metaslab	143	offset 23c000008000	size 3fffff8000	spacemap	209	free	20.7G	normal	
metaslab	144	offset 240000004000	size 3ffffc000	spacemap	208	free	1.22G	normal	
metaslab	145	offset 24400000000	size 4000000000	spacemap	210	free	30.2G	normal	
							-		

metaslab	146	offset 248000006000	size 3fffffa000	spacemap	211	free	1.32G	normal	
metaslab	147	offset 24c000002000	size 3ffffe000	spacemap	212	free	20.4G	normal	
metaslab	148	offset 25000008000	size 3fffff8000	spacemap	213	free	1.32G	normal	
metaslab	149	offset 254000004000	size 3ffffc000	spacemap	214	free	15.6G	normal	
metaslab	150	offset 25800000000	size 4000000000	spacemap	215	free	1.01G	normal	
metaslab	151	offset 25c000006000	size 3fffffa000	spacemap	216	free	34.1G	normal	
metaslab	152	offset 26000002000	size 3ffffe000	spacemap	218	free	18.7G	normal	
metaslab	153	offset 264000008000	size 3fffff8000	spacemap	217	free	1.21G	normal	
metaslab	154	offset 268000004000	size 3ffffc000	spacemap	219	free	36.5G	normal	
metaslab	155	offset 26c00000000	size 400000000	spacemap	220	free	1.44G	normal	
metaslab	156	offset 27000006000	size 3ffffa000	spacemap	221	free	33.3G	normal	
metaslab	157	offset 274000002000	size 3ffffe000	spacemap	222	free	1.17G	normal	
metaslab	158	offset 278000008000	size 3fffff8000	spacemap	223	free	1.58G	normal	
metaslab	159	offset 27c000004000	size 3ffffc000	spacemap	224	free	1.33G	normal	
metaslab	160	offset 28000000000	size 400000000	spacemap	225	free	21.4G	normal	
metaslab	161	offset 284000006000	size 3ffffa000	spacemap	227	free	24.5G	normal	
metaslab	162	offset 288000002000	size 3ffffe000	spacemap	226	free	1.50G	normal	
metaslab	163	offset 28c000008000	size 3fffff8000	spacemap	228	free	19.1G	normal	
metaslab	164	offset 290000004000	size 3ffffc000	spacemap	229	free	1.33G	normal	
metaslab	165	offset 29400000000	size 4000000000	spacemap	230	free	32.4G	normal	
metaslab	166	offset 298000006000	size 3fffffa000	spacemap	231	free	907M	normal	
metaslab	167	offset 29c000002000	size 3ffffe000	spacemap	232	free	17.1G	normal	
metaslab	168	offset 2a0000008000	size 3fffff8000	spacemap	234	free	29.6G	normal	
metaslab	169	offset 2a4000004000	size 3ffffc000	spacemap	233	free	1.46G	normal	
metaslab	170	offset 2a8000000000	size 4000000000	spacemap	235	free	16.2G	normal	
metaslab	171	offset 2ac000006000	size 3fffffa000	spacemap	236	free	1.36G	normal	
metaslab	172	offset 2b0000002000	size 3ffffe000	spacemap	237	free	1.07G	normal	
metaslab	173	offset 2b4000008000	size 3fffff8000	spacemap	238	free	895M	normal	
metaslab	174	offset 2b8000004000	size 3ffffc000	spacemap	239	free	15.6G	normal	
metaslab	175	offset 2bc00000000	size 4000000000	spacemap	241	free	17.4G	normal	
metaslab	176	offset 2c000006000	size 3fffffa000	spacemap	240	free	1.03G	normal	
metaslab	177	offset 2c4000002000	size 3ffffe000	spacemap	242	free	17.7G	normal	
metaslab	178	offset 2c8000008000	size 3fffff8000	spacemap	243	free	1.29G	normal	
metaslab	179	offset 2cc000004000	size 3ffffc000	spacemap	244	free	22.8G	normal	
metaslab	180	offset 2d000000000	size 400000000	spacemap	246	free	18.4G	normal	
metaslab	181	offset 2d4000006000	size 3fffffa000	spacemap	245	free	950M	normal	

metaslab	182	offset 2d8000002000	size 3ffffe000	spacemap	247	free	932M	normal	
metaslab	183	offset 2dc000008000	size 3fffff8000	spacemap	248	free	987M	normal	
metaslab	184	offset 2e0000004000	size 3ffffc000	spacemap	249	free	14.2G	normal	
metaslab	185	offset 2e4000000000	size 4000000000	spacemap	250	free	1.09G	normal	
metaslab	186	offset 2e8000006000	size 3fffffa000	spacemap	251	free	582M	normal	
metaslab	187	offset 2ec000002000	size 3ffffe000	spacemap	252	free	16.0G	normal	
metaslab	188	offset 2f000008000	size 3fffff8000	spacemap	254	free	13.0G	normal	
metaslab	189	offset 2f4000004000	size 3ffffc000	spacemap	253	free	1.40G	normal	
metaslab	190	offset 2f800000000	size 4000000000	spacemap	255	free	15.6G	normal	
metaslab	191	offset 2fc000006000	size 3ffffa000	spacemap	256	free	10.9G	normal	
metaslab	192	offset 30000002000	size 3ffffe000	spacemap	257	free	32.9G	normal	
metaslab	193	offset 30400008000	size 3fffff8000	spacemap	258	free	1.12G	normal	
metaslab	194	offset 308000004000	size 3ffffc000	spacemap	259	free	16.6G	normal	
metaslab	195	offset 30c00000000	size 4000000000	spacemap	260	free	1.34G	normal	
metaslab	196	offset 31000006000	size 3ffffa000	spacemap	261	free	28.0G	normal	
metaslab	197	offset 314000002000	size 3fffffe000	spacemap	262	free	892M	normal	
metaslab	198	offset 318000008000	size 3fffff8000	spacemap	263	free	17.8G	normal	
metaslab	199	offset 31c000004000	size 3ffffc000	spacemap	265	free	16.7G	normal	
metaslab	200	offset 32000000000	size 4000000000	spacemap	264	free	1.25G	normal	
metaslab	201	offset 324000006000	size 3ffffa000	spacemap	266	free	30.3G	normal	
metaslab	202	offset 328000002000	size 3fffffe000	spacemap	267	free	1.26G	normal	
metaslab	203	offset 32c000008000	size 3fffff8000	spacemap	268	free	29.4G	normal	
metaslab	204	offset 330000004000	size 3fffffc000	spacemap	269	free	1.26G	normal	
metaslab	205	offset 33400000000	size 4000000000	spacemap	270	free	757M	normal	
metaslab	206	offset 338000006000	size 3fffffa000	spacemap	271	free	1.59G	normal	
metaslab	207	offset 33c000002000	size 3fffffe000	spacemap	272	free	571M	normal	
metaslab	208	offset 34000008000	size 3fffff8000	spacemap	273	free	1.37G	normal	
metaslab	209	offset 344000004000	size 3fffffc000	spacemap	274	free	27.6G	normal	
metaslab	210	offset 34800000000	size 4000000000	spacemap	275	free	717M	normal	
metaslab	211	offset 34c000006000	size 3ffffa000	spacemap	276	free	24.7G	normal	
metaslab	212	offset 350000002000	size 3ffffe000	spacemap	278	free	33.1G	normal	
metaslab	213	offset 354000008000	size 3fffff8000	spacemap	277	free	1.32G	normal	
metaslab	214	offset 358000004000	size 3fffffc000	spacemap	279	free	25.6G	normal	
metaslab	215	offset 35c00000000	size 4000000000	spacemap	280	free	1.29G	normal	
metaslab	216	offset 36000006000	size 3fffffa000	spacemap	281	free	1.38G	normal	
metaslab	217	offset 364000002000	size 3ffffe000	spacemap	282	free	1.23G	normal	

metaslab	218	offset 368000008000	size 3fffff8000	spacemap	283	free	22.7G	normal	
metaslab	219	offset 36c000004000	size 3ffffc000	spacemap	284	free	1.33G	normal	
metaslab	220	offset 37000000000	size 4000000000	spacemap	285	free	670M	normal	
metaslab	221	offset 374000006000	size 3fffffa000	spacemap	287	free	37.0G	normal	
metaslab	222	offset 378000002000	size 3ffffe000	spacemap	286	free	22.8G	normal	
metaslab	223	offset 37c000008000	size 3fffff8000	spacemap	288	free	15.6G	normal	
metaslab	224	offset 380000004000	size 3ffffc000	spacemap	289	free	22.5G	normal	
metaslab	225	offset 38400000000	size 4000000000	spacemap	290	free	22.9G	normal	
metaslab	226	offset 388000006000	size 3ffffa000	spacemap	291	free	15.2G	normal	
metaslab	227	offset 38c000002000	size 3ffffe000	spacemap	292	free	22.3G	normal	
metaslab	228	offset 39000008000	size 3fffff8000	spacemap	293	free	1.07G	normal	
metaslab	229	offset 394000004000	size 3ffffc000	spacemap	294	free	948M	normal	
metaslab	230	offset 39800000000	size 4000000000	spacemap	295	free	901M	normal	
metaslab	231	offset 39c000006000	size 3ffffa000	spacemap	296	free	815M	normal	
metaslab	232	offset 3a0000002000	size 3ffffe000	spacemap	297	free	1.33G	normal	
metaslab	233	offset 3a4000008000	size 3fffff8000	spacemap	298	free	1.15G	normal	
metaslab	234	offset 3a8000004000	size 3ffffc000	spacemap	299	free	1.08G	normal	
metaslab	235	offset 3ac000000000	size 4000000000	spacemap	300	free	442M	normal	
metaslab	236	offset 3b000006000	size 3ffffa000	spacemap	301	free	712M	normal	
metaslab	237	offset 3b4000002000	size 3fffffe000	spacemap	302	free	994M	normal	
metaslab	238	offset 3b8000008000	size 3fffff8000	spacemap	303	free	1.17G	normal	
metaslab	239	offset 3bc000004000	size 3ffffc000	spacemap	304	free	1.14G	normal	
metaslab	240	offset 3c000000000	size 4000000000	spacemap	305	free	285M	normal	
metaslab	241	offset 3c4000006000	size 3ffffa000	spacemap	306	free	947M	normal	
metaslab	242	offset 3c8000002000	size 3fffffe000	spacemap	307	free	1.34G	normal	
metaslab	243	offset 3cc000008000	size 3fffff8000	spacemap	308	free	490M	normal	
metaslab	244	offset 3d0000004000	size 3ffffc000	spacemap	309	free	23.0G	normal	
metaslab	245	offset 3d400000000	size 4000000000	spacemap	310	free	1.47G	normal	
metaslab	246	offset 3d8000006000	size 3ffffa000	spacemap	311	free	21.5G	normal	
metaslab	247	offset 3dc000002000	size 3ffffe000	spacemap	312	free	726M	normal	
metaslab	248	offset 3e000008000	size 3fffff8000	spacemap	313	free	1.24G	normal	
metaslab	249	offset 3e4000004000	size 3ffffc000	spacemap	314	free	20.9G	normal	
metaslab	250	offset 3e800000000	size 400000000	spacemap	316	free	946M	normal	
metaslab	251	offset 3ec000006000	size 3fffffa000	spacemap	315	free	26.0G	normal	
metaslab	252	offset 3f000002000	size 3ffffe000	spacemap	317	free	677M	normal	
metaslab	253	offset 3f4000008000	size 3fffff8000	spacemap	318	free	1.37G	normal	

metaalab 254 offset 3f6000004000 size 3fffffc000 spacemap 319 free 1.28G normal metaalab 256 offset 4000000000 size 400000000 spacemap 322 free 14.0G normal metaalab 256 offset 4000000000 size 3ffff6000 spacemap 322 free 1.0G normal metaalab 258 offset 4000000000 size 3ffff6000 spacemap 323 free 1.0G normal metaalab 259 offset 4000000000 size 3ffff6000 spacemap 326 free 1.0G normal metaalab 261 offset 41000000000 size 3ffff6000 spacemap 325 free 506M normal metaalab 262 offset 41000000000 size 3ffff6000 spacemap 326 free 94MM normal metaalab 264 offset 42000000000 size 3ffff6000 spacemap 330 free 87M normal metaalab 266 <th></th>										
metaslab 256 offset 40400000000 size 3ffffa000 spacemap 322 free 8744 normal metaslab 257 offset 40400002000 size 3ffff1000 spacemap 321 free 22.36 normal metaslab 258 offset 4000000000 size 3ffff1000 spacemap 324 free 1.066 normal metaslab 260 offset 41000000000 size 3ffff000 spacemap 325 free 670M normal metaslab 262 offset 4100000000 size 3ffff000 spacemap 327 free 50M normal metaslab 264 offset 4100000000 size 3ffff000 spacemap 329 free 948M normal metaslab 266 offset 4200000000 size 3ffff6000 spacemap 331 free 8700 normal metaslab 266 o	metaslab	254	offset 3f8000004000	size 3ffffc000	spacemap	319	free	1.28G	normal	
metaslab 257 offset 40400002000 size 3ffffe000 spacemap 321 free 22.3 G normal metaslab 258 offset 4060000800 size 3ffff6000 spacemap 323 free 1.06G normal metaslab 260 offset 400000000 size 3ffff6000 spacemap 326 free 2.30C normal metaslab 261 offset 4100006000 size 3ffff6000 spacemap 325 free 70M normal metaslab 262 offset 4100000000 size 3ffff6000 spacemap 329 free 1.26G normal metaslab 266 offset 4200000000 size 3ffff6000 spacemap 331 free 1.26G normal metaslab 266 offset 4200000200 size 3ffff000 spacemap 331 free 1.26G normal metaslab 270 <	metaslab	255	offset 3fc00000000	size 400000000	spacemap	320	free	14.0G	normal	
metaslab 258 offset 40800008000 size 3ffff8000 spacemap 323 free 1.06G normal metaslab 259 offset 400000000 size 3ffff6000 spacemap 324 free 1.00G normal metaslab 261 offset 4100000600 size 3ffff6000 spacemap 325 free 670M normal metaslab 261 offset 41800002000 size 3ffff6000 spacemap 325 free 506M normal metaslab 263 offset 4120000000 size 3ffff000 spacemap 329 free 948M normal metaslab 266 offset 4200000000 size 3ffff600 spacemap 331 free 1.06G normal metaslab 267 offset 4200000000 size 3fffff000 spacemap 333 free 1.06G normal metaslab 270 <td< td=""><td>metaslab</td><td>256</td><td>offset 40000006000</td><td>size 3fffffa000</td><td>spacemap</td><td>322</td><td>free</td><td>874M</td><td>normal</td><td></td></td<>	metaslab	256	offset 40000006000	size 3fffffa000	spacemap	322	free	874M	normal	
metaslab 259 offset 40000004000 size 3ffffc000 spacemap 324 free 1.00G normal metaslab 260 offset 41000000000 size 3ffff1000 spacemap 326 free 1.00G normal metaslab 260 offset 41400000000 size 3ffff1000 spacemap 327 free 506M normal metaslab 263 offset 4100000000 size 3ffff1000 spacemap 328 free 1.25G normal metaslab 266 offset 4200000000 size 3ffff1000 spacemap 330 free 1.71G normal metaslab 266 offset 4200000000 size 3fffff000 spacemap 331 free 1.06G normal metaslab 269 offset 4300000000 size 3fffff000 spacemap 335 free 2.35G normal metaslab 271	metaslab	257	offset 404000002000	size 3ffffe000	spacemap	321	free	22.3G	normal	
metaslab 260 offset 4100000000 size 400000000 spacemap 326 free 23.0G normal metaslab 261 offset 4100000000 size 3ffff600 spacemap 327 free 500M normal metaslab 263 offset 4100000000 size 3ffff600 spacemap 327 free 1.25G normal metaslab 263 offset 4200000000 size 3ffff6000 spacemap 329 free 1.25G normal metaslab 266 offset 4200000000 size 3ffff6000 spacemap 331 free 1.7.1G normal metaslab 266 offset 42000002000 size 3ffff6000 spacemap 332 free 1.28G normal metaslab 269 offset 4300000000 size 3ffff6000 spacemap 335 free 1.38G normal metaslab 270	metaslab	258	offset 408000008000	size 3fffff8000	spacemap	323	free	1.06G	normal	
metaslab 261 offset 41400006000 size 3ffff000 spacemap 325 free 670M normal metaslab 262 offset 41800002000 size 3ffff000 spacemap 327 free 506M normal metaslab 263 offset 4200000400 size 3ffff000 spacemap 328 free 1.56 normal metaslab 265 offset 4200000000 size 3ffff000 spacemap 330 free 1.71C normal metaslab 266 offset 4200000000 size 3ffff000 spacemap 331 free 1.06C normal metaslab 269 offset 4300000000 size 3ffff000 spacemap 333 free 1.06C normal metaslab 270 offset 4300000000 size 3ffff8000 spacemap 335 free 1.06G normal metaslab 270 of	metaslab	259	offset 40c000004000	size 3ffffc000	spacemap	324	free	1.00G	normal	
metaslab 262 offset 41800002000 size 3ffff900 spacemap 327 free 506M normal metaslab 263 offset 41000004000 size 3ffff900 spacemap 328 free 948M normal metaslab 265 offset 420000000 size 3ffff600 spacemap 330 free 17.1G normal metaslab 266 offset 420000000 size 3ffff8000 spacemap 331 free 887M normal metaslab 266 offset 4200000000 size 3ffff8000 spacemap 333 free 1.066 normal metaslab 270 offset 4300000000 size 3ffff000 spacemap 333 free 1.066 normal metaslab 271 offset 4400000200 size 3ffff000 spacemap 333 free 1.060 normal metaslab 272 off	metaslab	260	offset 41000000000	size 4000000000	spacemap	326	free	23.0G	normal	
metaslab 263 offset 41c00008000 size 3ffff8000 spacemap 328 free 1.25G normal metaslab 264 offset 4200000000 size 3ffff8000 spacemap 320 free 948M normal metaslab 265 offset 4200000000 size 3ffff8000 spacemap 330 free 17.1G normal metaslab 266 offset 4200000200 size 3ffff8000 spacemap 331 free 87M normal metaslab 266 offset 4200000000 size 3ffff6000 spacemap 331 free 87M normal metaslab 269 offset 4300000000 size 3ffff6000 spacemap 335 free 73M normal metaslab 271 offset 4400002000 size 3ffff8000 spacemap 336 free 23.5 normal metaslab 271 offset 4400000200 size 3ffff8000 spacemap 336 free	metaslab	261	offset 414000006000	size 3fffffa000	spacemap	325	free	670M	normal	
metaslab 264 offset 4200000000 size 3ffffc000 spacemap 329 free 948M normal metaslab 265 offset 42400000000 size 3ffffa000 spacemap 330 free 17.16 normal metaslab 266 offset 4260000200 size 3ffffa000 spacemap 331 free 887M normal metaslab 266 offset 4200000000 size 3ffffa000 spacemap 333 free 1.06G normal metaslab 269 offset 43000004000 size 3ffffa000 spacemap 334 free 1.28G normal metaslab 271 offset 4300000000 size 3ffffa000 spacemap 336 free 23.5G normal metaslab 272 offset 4300000000 size 3ffffs000 spacemap 337 free 20.3G normal metaslab 276	metaslab	262	offset 418000002000	size 3ffffe000	spacemap	327	free	506M	normal	
metaslab 265 offset 42400000000 size 400000000 spacemap 330 free 17.1G normal metaslab 266 offset 42800006000 size 3ffffa000 spacemap 331 free 887M normal metaslab 267 offset 43000008000 size 3ffffa000 spacemap 332 free 846M normal metaslab 268 offset 4300000000 size 3ffffa000 spacemap 334 free 1.06G normal metaslab 270 offset 4300000000 size 3ffffa000 spacemap 335 free 793M normal metaslab 271 offset 4300000000 size 3ffffa000 spacemap 336 free 23.5G normal metaslab 273 offset 44000008000 size 3ffffa000 spacemap 338 free 1.06G normal metaslab 274 offset 44000008000 size 3ffffa000 spacemap 338 free 1.06G normal metaslab 276 offset 44000008000 size 3ffffa000 spacemap 340 free	metaslab	263	offset 41c000008000	size 3fffff8000	spacemap	328	free	1.25G	normal	
metaslab 266 offset 42800006000 size 3fffffa000 spacemap 331 free 887M normal metaslab 267 offset 4200002000 size 3fffff8000 spacemap 332 free 846M normal metaslab 268 offset 43400004000 size 3fffff8000 spacemap 333 free 1.06G normal metaslab 269 offset 4340000000 size 3fffff6000 spacemap 335 free 793M normal metaslab 270 offset 43400000200 size 3ffff6000 spacemap 336 free 23.5G normal metaslab 271 offset 4400000200 size 3ffff600 spacemap 337 free 20.3G normal metaslab 274 offset 44400000800 size 3ffff600 spacemap 338 free 1.06G normal metaslab 274 offset 4400000000 size 3ffff600 spacemap 340 free 20.4G normal metaslab 276 offset 4500000000 size 3ffff600 spacemap 341 free <	metaslab	264	offset 420000004000	size 3ffffc000	spacemap	329	free	948M	normal	
metaslab 267 offset 42c00002000 size 3fffffe000 spacemap 332 free 846M normal metaslab 268 offset 43000008000 size 3fffffe000 spacemap 333 free 1.06G normal metaslab 269 offset 43400000400 size 3fffff000 spacemap 334 free 1.28G normal metaslab 270 offset 4360000000 size 3fffff000 spacemap 336 free 23.5G normal metaslab 271 offset 4300000000 size 3fffff8000 spacemap 336 free 20.3G normal metaslab 272 offset 4400000200 size 3fffff8000 spacemap 338 free 10.6G normal metaslab 273 offset 4400000000 size 3fffff8000 spacemap 340 free 20.4G normal metaslab 276 offset 4400000000 size 3fffff8000 spacemap 341 free 1000M normal metaslab 276 offset 4500000000 size 3fffff6000 spacemap 342 free	metaslab	265	offset 424000000000	size 4000000000	spacemap	330	free	17.1G	normal	
metaslab 268 offset 43000008000 size 3fffff8000 spacemap 333 free 1.06G normal metaslab 269 offset 4340000000 size 3fffff000 spacemap 334 free 1.28G normal metaslab 270 offset 4380000000 size 400000000 spacemap 335 free 793M normal metaslab 271 offset 4300000200 size 3fffff000 spacemap 336 free 20.3G normal metaslab 273 offset 44000002000 size 3ffff600 spacemap 338 free 1.06G normal metaslab 274 offset 440000000 size 3ffff600 spacemap 339 free 840M normal metaslab 276 offset 4500000000 size 3ffff600 spacemap 341 free 1.04G normal metaslab 277 offset 4500000200 size 3ffff600 spacemap 342 free 1.04G normal metaslab 278 offset 450000200 size 3ffff600 spacemap 342 free 1.04	metaslab	266	offset 428000006000	size 3ffffa000	spacemap	331	free	887M	normal	
metaslab 269 offset 43400004000 size 3fffffc000 spacemap 334 free 1.28G normal metaslab 270 offset 4380000000 size 3fffff000 spacemap 335 free 793M normal metaslab 271 offset 4300000000 size 3fffff000 spacemap 336 free 23.5G normal metaslab 272 offset 44000008000 size 3ffff6000 spacemap 338 free 1.06G normal metaslab 273 offset 4400000000 size 3ffff6000 spacemap 339 free 840M normal metaslab 274 offset 4400000000 size 3ffff6000 spacemap 340 free 20.4G normal metaslab 275 offset 4500000000 size 3ffff6000 spacemap 341 free 10.00M normal metaslab 276 offset 4500000000 size 3ffff6000 spacemap 342 free 1.04G normal metaslab 278 offset 4500000000 size 3ffff6000 spacemap 344 free	metaslab	267	offset 42c000002000	size 3fffffe000	spacemap	332	free	846M	normal	
metaslab 270 offset 43800000000 size 400000000 spacemap 335 free 793M normal metaslab 271 offset 43c00006000 size 3ffffa000 spacemap 336 free 23.5G normal metaslab 272 offset 44000002000 size 3ffff600 spacemap 337 free 20.3G normal metaslab 273 offset 4400000800 size 3ffff6000 spacemap 338 free 1.06G normal metaslab 274 offset 4400000000 size 3ffff600 spacemap 340 free 20.4G normal metaslab 276 offset 4500000000 size 3ffffa00 spacemap 341 free 1000M normal metaslab 277 offset 4500000200 size 3ffff800 spacemap 343 free 1.7G normal metaslab 278 offset 4500000000 size 3ffff800 spacemap 344 free	metaslab	268	offset 43000008000	size 3fffff8000	spacemap	333	free	1.06G	normal	
metaslab 271 offset 43c00006000 size 3fffffa000 spacemap 336 free 23.5G normal metaslab 272 offset 44000002000 size 3fffffe000 spacemap 337 free 20.3G normal metaslab 273 offset 44000008000 size 3fffffe000 spacemap 338 free 1.06G normal metaslab 274 offset 44800004000 size 3fffffe000 spacemap 339 free 840M normal metaslab 275 offset 4400000000 size 3ffffe000 spacemap 340 free 20.4G normal metaslab 276 offset 4500000000 size 3ffffa000 spacemap 341 free 10.0G normal metaslab 276 offset 45000002000 size 3fffff8000 spacemap 343 free 1.04G normal metaslab 278 offset 45000002000 size 3fffff8000 spacemap 344 <t< td=""><td>metaslab</td><td>269</td><td>offset 434000004000</td><td>size 3ffffc000</td><td>spacemap</td><td>334</td><td>free</td><td>1.28G</td><td>normal</td><td></td></t<>	metaslab	269	offset 434000004000	size 3ffffc000	spacemap	334	free	1.28G	normal	
metaslab 272 offset 44000002000 size 3fffffe000 spacemap 337 free 20.3G normal metaslab 273 offset 44400008000 size 3fffffe000 spacemap 338 free 1.06G normal metaslab 274 offset 44800004000 size 3fffffc000 spacemap 339 free 840M normal metaslab 275 offset 4400000000 size 3fffffc000 spacemap 340 free 20.4G normal metaslab 276 offset 4500000600 size 3fffffa000 spacemap 341 free 1000M normal metaslab 277 offset 4500000200 size 3fffffa000 spacemap 343 free 1.04G normal metaslab 277 offset 4500000000 size 3fffffa000 spacemap 344 free 1.04G normal metaslab 280 offset 4600000000 size 3fffffa000 spacemap 345 free 1.04G normal metaslab 281 offset 4600000000 size 3fffffa000 spacemap 346 free <td>metaslab</td> <td>270</td> <td>offset 43800000000</td> <td>size 400000000</td> <td>spacemap</td> <td>335</td> <td>free</td> <td>793M</td> <td>normal</td> <td></td>	metaslab	270	offset 43800000000	size 400000000	spacemap	335	free	793M	normal	
metaslab273offset44400008000size31ffff8000spacemap338free1.06Gnormalmetaslab274offset44800004000size31ffffc000spacemap339free840Mnormalmetaslab275offset44c00000000size31ffffa000spacemap340free20.4Gnormalmetaslab276offset45000006000size31ffffa000spacemap341free1000Mnormalmetaslab277offset4500002000size31ffffe000spacemap342free1.04Gnormalmetaslab278offset45000004000size31ffffe000spacemap343free17.7Gnormalmetaslab278offset45000004000size31ffffc000spacemap344free1.23Gnormalmetaslab279offset45000000000size31ffffc000spacemap345free905Mnormalmetaslab280offset46000000000size31ffffc000spacemap346free22.1Gnormalmetaslab281offset4600002000size31ffffc000spacemap346free1.5Gnormalmetaslab282offset4600002000size31ffffc000spacemap348free1.5Gnormalmetaslab283offset4700000000size31ffffc000spacem	metaslab	271	offset 43c000006000	size 3fffffa000	spacemap	336	free	23.5G	normal	
metaslab274offset44800004000size3fffffc000spacemap339free840Mnormalmetaslab275offset4400000000size400000000spacemap340free20.4Gnormalmetaslab276offset45000006000size3fffffa000spacemap341free1000Mnormalmetaslab277offset45400002000size3fffffe000spacemap342free1.04Gnormalmetaslab278offset45800008000size3fffffe000spacemap343free17.7Gnormalmetaslab279offset4500000000size3fffffe000spacemap344free1.23Gnormalmetaslab280offset4600000000size3fffffe000spacemap345free905Mnormalmetaslab281offset46000000000size3fffffe000spacemap345free1.97Gnormalmetaslab282offset46000000000size3fffffe000spacemap346free1.97Gnormalmetaslab282offset4600000000size3fffffe000spacemap346free1.97Gnormalmetaslab283offset46000008000size3fffffe000spacemap346free1.15Gnormalmetaslab284offset47000000000size3fffffe000space	metaslab	272	offset 440000002000	size 3ffffe000	spacemap	337	free	20.3G	normal	
metaslab275offset44c00000000size400000000spacemap340free20.4Gnormalmetaslab276offset45000006000size3ffffa000spacemap341free1000Mnormalmetaslab277offset45400002000size3fffffe000spacemap342free1.04Gnormalmetaslab278offset45800008000size3fffff8000spacemap343free17.7Gnormalmetaslab279offset45c00004000size3fffffc000spacemap344free1.23Gnormalmetaslab280offset46000000000size3fffffa000spacemap346free22.1Gnormalmetaslab281offset46000002000size3fffffa000spacemap347free19.7Gnormalmetaslab283offset4600000000size3fffff8000spacemap348free1.15Gnormalmetaslab284offset47000000000size3fffff000spacemap349free12.7Gnormalmetaslab285offset47000000000size3fffff000spacemap350free11.9Gnormalmetaslab286offset47000000000size3fffff000spacemap350free11.9Gnormalmetaslab286offset47000000000size3fffffa000spac	metaslab	273	offset 444000008000	size 3fffff8000	spacemap	338	free	1.06G	normal	
metaslab276offset45000006000size3ffffa000spacemap341free1000Mnormalmetaslab277offset45400002000size3ffffe000spacemap342free1.04Gnormalmetaslab278offset45800008000size3fffff8000spacemap343free17.7Gnormalmetaslab279offset45000004000size3fffff000spacemap344free1.23Gnormalmetaslab280offset46000000000size3fffff000spacemap346free22.1Gnormalmetaslab281offset4600000000size3fffff000spacemap347free19.7Gnormalmetaslab282offset4600000000size3fffff000spacemap348free1.15Gnormalmetaslab283offset47000004000size3fffff000spacemap349free12.7Gnormalmetaslab284offset47000000000size3fffff000spacemap350free21.9Gnormalmetaslab285offset47800000600size3fffff000spacemap350free1.9Gnormalmetaslab286offset47800000600size3fffff000spacemap351free19.0Gnormalmetaslab287offset47000000000size3fffff000spacemap <td>metaslab</td> <td>274</td> <td>offset 448000004000</td> <td>size 3fffffc000</td> <td>spacemap</td> <td>339</td> <td>free</td> <td>840M</td> <td>normal</td> <td></td>	metaslab	274	offset 448000004000	size 3fffffc000	spacemap	339	free	840M	normal	
metaslab277offset45400002000size3fffffe000spacemap342free1.04Gnormalmetaslab278offset45800008000size3fffff8000spacemap343free17.7Gnormalmetaslab279offset45c000004000size3fffffc000spacemap344free1.23Gnormalmetaslab280offset46000000000size3fffffa000spacemap345free905Mnormalmetaslab281offset4600000000size3fffffa000spacemap346free22.1Gnormalmetaslab282offset46000002000size3fffffe000spacemap347free19.7Gnormalmetaslab283offset46c00008000size3fffff8000spacemap348free1.15Gnormalmetaslab284offset47000004000size3fffffc000spacemap349free12.7Gnormalmetaslab285offset47400000000size3fffffc000spacemap350free21.9Gnormalmetaslab286offset47800006000size3fffffa000spacemap351free19.0Gnormalmetaslab286offset47000002000size3fffffa000spacemap351free19.0Gnormalmetaslab287offset47000002000size3fffffa000 <td< td=""><td>metaslab</td><td>275</td><td>offset 44c000000000</td><td>size 400000000</td><td>spacemap</td><td>340</td><td>free</td><td>20.4G</td><td>normal</td><td></td></td<>	metaslab	275	offset 44c000000000	size 400000000	spacemap	340	free	20.4G	normal	
metaslab278offset45800008000size3fffff8000spacemap343free17.7Gnormalmetaslab279offset45c00004000size3fffffc000spacemap344free1.23Gnormalmetaslab280offset46000000000size3fffffa000spacemap345free905Mnormalmetaslab281offset46400006000size3fffffa000spacemap346free22.1Gnormalmetaslab282offset46800002000size3fffffe000spacemap347free19.7Gnormalmetaslab283offset46c00008000size3fffffe000spacemap348free1.15Gnormalmetaslab284offset47000000000size3fffffc000spacemap349free12.7Gnormalmetaslab284offset4700000000size3fffffa000spacemap350free21.9Gnormalmetaslab286offset47800006000size3fffffa000spacemap351free19.0Gnormalmetaslab287offset47c00002000size3fffffa000spacemap352free1.16Gnormalmetaslab288offset48000008000size3fffff8000spacemap353free912Mnormalmetaslab288offset48000008000size3fffff8000s	metaslab	276	offset 450000006000	size 3ffffa000	spacemap	341	free	1000M	normal	
metaslab279offset45c000004000size3fffffc000spacemap344free1.23Gnormalmetaslab280offset4600000000size40000000spacemap345free905Mnormalmetaslab281offset46400006000size3fffffa000spacemap346free22.1Gnormalmetaslab282offset46800002000size3fffffe000spacemap347free19.7Gnormalmetaslab283offset46000008000size3fffffe000spacemap348free1.15Gnormalmetaslab284offset47000004000size3fffffc000spacemap349free12.7Gnormalmetaslab285offset47400000000size3fffffa000spacemap350free21.9Gnormalmetaslab286offset47800006000size3fffffa000spacemap351free19.0Gnormalmetaslab287offset47c00002000size3fffffe000spacemap352free1.16Gnormalmetaslab288offset48000008000size3fffff8000spacemap353free912Mnormal	metaslab	277	offset 454000002000	size 3ffffe000	spacemap	342	free	1.04G	normal	
metaslab280offset 46000000000size 400000000spacemap345free905Mnormalmetaslab281offset 46400006000size 3fffffa000spacemap346free22.1Gnormalmetaslab282offset 46800002000size 3fffffe000spacemap347free19.7Gnormalmetaslab283offset 4600008000size 3fffffe000spacemap348free1.15Gnormalmetaslab284offset 47000004000size 3fffffc000spacemap349free12.7Gnormalmetaslab285offset 474000000000size 3fffffa000spacemap350free21.9Gnormalmetaslab286offset 47800006000size 3fffffa000spacemap351free19.0Gnormalmetaslab287offset 47000002000size 3fffffe000spacemap352free1.16Gnormalmetaslab288offset 48000008000size 3fffff8000spacemap353free912Mnormal	metaslab	278	offset 458000008000	size 3fffff8000	spacemap	343	free	17.7G	normal	
metaslab281offset 464000006000size 3fffffa000spacemap346free22.1Gnormalmetaslab282offset 46800002000size 3fffffe000spacemap347free19.7Gnormalmetaslab283offset 46c00008000size 3fffff8000spacemap348free1.15Gnormalmetaslab284offset 47000004000size 3fffffc000spacemap349free12.7Gnormalmetaslab285offset 47400000000size 3fffffa000spacemap350free21.9Gnormalmetaslab286offset 478000006000size 3fffffa000spacemap351free19.0Gnormalmetaslab287offset 47c00002000size 3fffffe000spacemap352free1.16Gnormalmetaslab288offset 48000008000size 3fffff8000spacemap353free912Mnormal	metaslab	279	offset 45c000004000	size 3ffffc000	spacemap	344	free	1.23G	normal	
metaslab282offset 468000002000size 3fffffe000spacemap347free19.7Gnormalmetaslab283offset 46c00008000size 3fffff8000spacemap348free1.15Gnormalmetaslab284offset 47000004000size 3fffffc000spacemap349free12.7Gnormalmetaslab285offset 47400000000size 400000000spacemap350free21.9Gnormalmetaslab286offset 47800006000size 3fffffa000spacemap351free19.0Gnormalmetaslab287offset 47c00002000size 3fffffe000spacemap352free1.16Gnormalmetaslab288offset 48000008000size 3fffff8000spacemap353free912Mnormal	metaslab	280	offset 460000000000	size 4000000000	spacemap	345	free	905M	normal	
metaslab283offset 46c000008000size 3fffff8000spacemap348free1.15Gnormalmetaslab284offset 47000004000size 3fffffc000spacemap349free12.7Gnormalmetaslab285offset 47400000000size 400000000spacemap350free21.9Gnormalmetaslab286offset 47800006000size 3fffffa000spacemap351free19.0Gnormalmetaslab287offset 47c00002000size 3fffffe000spacemap352free1.16Gnormalmetaslab288offset 48000008000size 3fffff8000spacemap353free912Mnormal	metaslab	281	offset 464000006000	size 3ffffa000	spacemap	346	free	22.1G	normal	
metaslab284offset 470000004000size 3fffffc000spacemap349free12.7Gnormalmetaslab285offset 47400000000size 400000000spacemap350free21.9Gnormalmetaslab286offset 478000006000size 3fffffa000spacemap351free19.0Gnormalmetaslab287offset 47c00002000size 3fffffe000spacemap352free1.16Gnormalmetaslab288offset 48000008000size 3fffff8000spacemap353free912Mnormal	metaslab	282	offset 468000002000	size 3ffffe000	spacemap	347	free	19.7G	normal	
metaslab 285 offset 47400000000 size 400000000 spacemap 350 free 21.9G normal metaslab 286 offset 478000006000 size 3fffffa000 spacemap 351 free 19.0G normal metaslab 287 offset 47c000002000 size 3fffffe000 spacemap 352 free 1.16G normal metaslab 288 offset 48000008000 size 3fffff8000 spacemap 353 free 912M normal	metaslab	283	offset 46c000008000	size 3fffff8000	spacemap	348	free	1.15G	normal	
metaslab 286 offset 478000006000 size 3fffffa000 spacemap 351 free 19.0G normal metaslab 287 offset 47c000002000 size 3fffffe000 spacemap 352 free 1.16G normal metaslab 288 offset 48000008000 size 3fffff8000 spacemap 353 free 912M normal	metaslab	284	offset 470000004000	size 3ffffc000	spacemap	349	free	12.7G	normal	
metaslab 287 offset 47c000002000 size 3fffffe000 spacemap 352 free 1.16G normal metaslab 288 offset 480000008000 size 3fffff8000 spacemap 353 free 912M normal	metaslab	285	offset 47400000000	size 400000000	spacemap	350	free	21.9G	normal	
metaslab 288 offset 480000008000 size 3fffff8000 spacemap 353 free 912M normal	metaslab	286	offset 478000006000	size 3ffffa000	spacemap	351	free	19.0G	normal	
	metaslab	287	offset 47c000002000	size 3ffffe000	spacemap	352	free	1.16G	normal	
metaslab 289 offset 484000004000 size 3fffffc000 spacemap 354 free 902M normal	metaslab	288	offset 48000008000	size 3fffff8000	spacemap	353	free	912M	normal	
	metaslab	289	offset 484000004000	size 3ffffc000	spacemap	354	free	902M	normal	

metaslab 290 offset 48800000000 size 400000000 spacemap 355 free 1.35G normal

B.3 draidcfg output for the 80 drive demonstration (80.nvl)

The following is the complete listing of the base permuation table created for the dRAID configuration shown in the demonstration of arbitrary pool configuration (section A.1.1). Each line represents the random ordering for the permutation of the 80 drives in the array.

draidcfg -r 80.nvl
dRAID3 vdev of 80 child drives: 7 x (8 data + 3 parity) and 3 distributed spare
Using 64 base permutations
23,54,38,76,61,14,34,48, 9,31,52,10, 3,41,46,70, 1, 6,59,47,28,32,29,49,30,22,27,11,44,20,56, 5,74, 8,50,15,62,66,33,67,16,65,36,71,75,18,68,21,69,26,64,60,55,42,43,63,35,37,24, 7,17,45, 0, 2,58,78,57,13,12,72,73, 4,19,25,51,79,39,53,77,40,
41,54,75,48, 2,57,36, 8,76,44, 5, 3,22,30,61,69,47,28,13, 0, 6,71,34,55,33,46,70,79,66,45,27,74,18,25,60,72,11,50,68, 1,53,32,19,64,40,51, 4,31,17,62,42,39,26,56, 7,16,24,12,38,15,78,35,37,67, 9,23,20,49,10,43,14,59,77,29,63,73,58,52,21,65,
14,65,43, 9,16,53,46,69,17,40,20, 3,47,70,28,39,54, 5,12,24,78, 2,49,61,11,51,75,79,41,50,73,34,18,21,25,52,44,22,32,77, 8,59,15, 7,74,66, 0,71,45,56, 4,36,58,23,68, 6,67,42,29,64,26,33,72,10,37,13, 1,76,60,38,48,31,63,27,35,62,55,19,30,57,
$2,56,48,51,68,15,75,41,58,35,50,14,36,16,63,77,30,69,11,10,26,7,62,19,24,44,28,37,31,43,64,25,49,32,54,53,9,76,39,57,33,74,\\8,34,27,23,3,40,72,59,67,55,65,47,66,1,71,61,46,18,17,29,79,38,12,70,22,45,78,60,5,6,21,73,13,0,42,20,4,52,$
64,76,20, 7,34,21,63,13, 0,47,51,41,59,57,74, 6,25,71,54,33,35,46,19,15,43, 8,23,18,24,61,10,39,72,27,26, 9,62,17,53,78, 2,58,29,60,77,44,36,66,70,22,67,75,65,69,30, 4,40,14,42,45,38,49,32,11,31,16,28,79, 3,68,56,73, 1,48, 5,52,12,55,50,37,
62,33,67,58,38,57,61,24, 3,47, 0,37,53,72,40,39,35,10,20,60,43,41,69,55,23,21,59,25,13,28, 9,12,51,19,52,27,63,45, 2,31,46,15, 5, 7,14,68, 1,76,78,50,29,26, 6,42,22,56,11,64,16, 4,49,79,73,74,54,36, 8,77,65,17,75,66,44,71,70,32,34,18,48,30,
10,57,30,46,42,55,34,16,52,49,44,36,53,18,79,21,38,77,60,39,45, 8,19,24,68,17,73,63,66,70,65, 7, 4,37,61, 6,64,12, 9,26,28,14,78,31,41,27,11,33,51, 3,29,35,74,32,23,58,76,13, 0,22,15,69,47, 1,56, 5,72,67,54,50,43,48,59,25, 2,75,62,40,71,20,
59,53,27,26,72,23,33,56,66,10,73,52,51, 8,24,18,11,68, 6,77,45,19,37, 2, 4,76,47,17,34,62,49, 0,50,28,74,22,21,15,78, 7,25,20,40,32,35,38,31,71,57,65,12,16,13,48,43, 1,54,58,36, 9,63,64,79, 5,42,44,75,14,39,55,60,29,30,46,61,70,41,69,67, 3,
40,14,16,31,5,63,69,53,43,37,73,50,77,20,29,61,41,48,45,67,15,55,47,79,60,25,76,54,12,57,46,56,35,1,7,65,22,11,34,26,13,70,27,72,2,74,19,8,28,23,66,62,71,33,64,18,17,3,0,49,6,36,75,59,78,30,32,58,52,24,4,21,10,68,39,51,9,38,44,42,
53,55,59,77,64,39,40,62,76,16,74, 5,26,23,66,47,21, 0, 6,60,69,27,11,58,72,34,73,45,38, 3,43,49,15, 9,19, 1,79,35,67,31,44,75, 46,68,50,71, 2, 8,48,65,54,14,78,63,41,13,10,29,12,32,20,57,30,25,24,51,36,18,56,33, 4,70,37,61,17,28,52,42, 7,22,
47,54,51, 3,49,45,32,71,68,26,31,65,30, 8,74, 9,76,78,46,25,38,53,60,19,11,50, 6,33,58,37,39, 7,20, 2, 0, 5,75,28, 63,48,44, 40,34,41,17,15,67,16,66,13,22,72,73,21,35,36,77,12,70, 1, 4,10,69,23,52,43,79,56,59,27,62,57,55, 14,64,24,18,42,29,61,
33,65,36,19,47,41,53, 9,26,17,66, 1, 5,77,69,59, 6,27, 7,14,71,68,12,25,28,10,13,18,61,51,22,54,34,31,48,57,32,67,49,62, 8,23,40,58,39,79,50,74,45,44,73,64,30, 0, 2,56,75,21,29,43,63,76,72,60,46, 4,42,20,70,16, 3,11,52,55,38,78,37,24,15,35,
75,79,64,78,22,61,28, 2,50,51,21, 5,46,72,16,15,70, 3,49,32,36,26,60,27, 0,24,52,56, 7,43,12,73,42,30,45,17,48,10,33,74,37,35,44, 71,29,68,53,23,13,59,38,34,19,18, 8,62,65,66,39,76,20,55,77,58,25,40,41,11,31,47,57, 9,14, 4,67, 1,54,69,63, 6,

12,76,64,36,37,28,44,57,49,13,39,73,58,5,27,52,33,15,26,56,51,66,14,63,23,71,43,62,65,11,35,74,16,18,0,7,1, 6,34,60,47,46,29,20,79, 3,10,53,42,78,68,31,21,50,54,70, 4,61,55,38,30,59,69, 8,32,77, 9,22,41,24,48,75,19,17,25,67, 2,40,45,72, 19, 2,64, 8,37,58,25,70,33,23,28,68,52,69,34,30,27,50, 7,56,62,47,51,57,45,61,65,67,31,75,79,43,42,13,29,53,66,72,77,35,26, 5,48,15,38,10, 1,59,14,16,11,40, 3,20,76,63,49,74,41,39, 0,55,46,54,78,12, 4,22,71, 9,21,36,44,60,18,73,17,32,24, 6, 73,55,35,71,46,40,26,32,29,23,13,15,30,0,72,68,22,64,25,1,56,76,43,36,44,8,27,39,18,63,41,9,19,11,58,28,50,24,2,77, 7,53,34,66,49,65,78,67,59,69,57,48,70,79,33, 5,61,60,51,62, 3,14,75,16,17, 4,52,74,10,20,45,12,47,37,54,31, 6,38,21,42, 0,43,38,78,21,73,18,16, 3,79,70,24,47,74,12,67,63,30,41, 6,34,27,76,72,25,65, 9,37,55,39,31, 4,71, 8,10,58,44,11,35,36,23,46, 48,53,52,69,32,20,59,66,26,14,62,61,57,50,15,13,17,29,60,56,68,33, 5,75,54,51,28,42,45, 2,40,22,49, 7,19, 1,77,64, 74,19,37,28,34,69,59,31,78,13,61,65,54,40,75,73,70,38,22, 6,63,10,27,48, 4,46,14,21,41, 3,15,20,76,26,77,62,60, 8,66,45,23,55,29,50,67,11,52,25, 5, 2,36, 0,30,51,33,49,43,44,53,39,32, 1,79,71,72,12,47,58, 9,24,42,16,57,35,56, 7,68,17,18,64, 65,10, 5,51,26, 4,68,22, 7,23,55, 1,21,34,61,75,20,76, 9,74,62,48,54,73,35,13,58, 8,44,53,33,38,42,60,64,17,36,15,32,29,67,66, 41,52,63,31,47,79, 3, 0,24,49,78,72,18,12,14,46,37,11,77,39,56,30,59,69, 2,25, 6,16,71,28,50,45,57,19,27,40,43,70, 14,79,16,51, 9,50,41,15, 2, 8,32,75,21,43,11,26,65,36,27,47,38,17,67, 3,71,45,60,42, 1,54,22, 4,20, 6,40,76,74,56,12,61,28, 0,25,78,55,23,18,44, 5,73,52,29,77,57,34,24,58,19, 7,46,37,69,35,62,66,13,53,59,70,64,39,63,48,33,10,31,68,49,72,30, 30,52, 4,58,14,78,62, 5,76,29,36,28,63,64,74,56, 3,32,39,33,18,48,65,10,68,50,66, 0,16,57,26, 9,60,37,23,17,34,25,67,69, 8,79,77,53,15,73,44,71,12,59, 1,51, 2,11,35, 6,47,22,46,75,38,55,49, 7,61,54,19,41,13,40,27,31,42,70,72,20,21,43,45,24, 20,21,44, 0,30,28,46, 6, 7,40,13,76,72,37,53, 8,61,57,18,35,12,78,31,17,29,79,70, 2,26,77,50,25,41,23,47, 1,34,16,69,68,10, 3,74,59,14,55,54,60,27,49, 9,39,73,65,42,67,15,33,56,58,11,64,22,24,43, 4,36,66,38,62,51,48, 5,32,63,52,45,75,71,19, 11,31,79,26,14, 9,27,62, 1,39,29,54, 6, 5,41,28,22,65, 7,34,57,77,59,73,42,32,46,25,38,63,74,47,17,60,72,67,33,64,53,40, 66,12,48,15,71,56,23, 3,76,44,30, 4,16,49,37,24,55,52,58,61,51,70,35,43,18,69,13,75, 2, 8,36,45,19,50, 0,10,68,78,20,21, 66,31,41,34,44,77,79,75,33,18,22,16,27,19,40,17,57,8,0,26,50,28,15,37,29,49,24,6,9,13,53,60,73,71,25,52,78,10,58,65,11,3,62, 1, 4,38,70,43, 5,12,20,61,63,47,23,55, 7,74,35,76,48,68,67,59,30,42,72,46,39,54,69,51,36,56,64,45,32,21,14, 2, 15,41, 7,18,34,77,36, 0,45,66,22,59,56,42,48, 8,31,61,43,30,70,13,52,60,49,75,46,53,14,64,28,16, 3,58, 2,35,26,67,72,44,79, 29,51,74, 1, 5,55, 4,17,71,73,65,27,54,38,78,23,76,68,47,32,19,40,69,21,24,39,33,37,62,10,11, 9,20,63,25,50,12,57, 6, 74,76,51, 8,19,78,32,46, 9,63,67,49,75,26,16, 6,66,25,30,53,56,37,77,22, 1,17,45,65,59,12,68,31,55,27,23,34,44,14,11,48,54,18,36, 64, 0,70, 3,21,39, 4,62,79,20,40,57,15,35,60,38,61,10,69,41,43,24,50,73,47,33, 7,71,13,72,42,58,28, 2,52, 5,29, 4,39,24,66,41,72,29,25, 2,55, 6,43,44,52,45,75,19, 7,22,11,20,16,63,49,59,60,26,35,54,70,64, 3,56,42,58,71,48,57,51,77,18,76,61, 9,62,36,53,38,79, 1,50,74,47,15,14,34, 8,78,40,10,73,13,12,30,28, 5,33,17,27,37, 0,65,67,23,46,31,21,69,32,68, 27,46,61,37,41,9,74,7,79,73,67,3,25,45,33,10,59,49,52,77,78,43,53,4,0,17,35,21,14,60,44,54,32,24,63,42,72,39,62,36, 40,64,66,34,75, 6,30,69,38, 5,51,47,28,22,18,57,31,71,15,23,68,20,12, 1,56,76, 8,26,55, 2,70,29,13,65,48,58,11,16,50,19, 18,13, 9,72,41,35,20,11,10,70,43,37,67,73,56,33,52,46,29,30,45,61, 1, 4, 7,16,55,23,40,66,36,48,71,63,34,28,64,12,79, 8,14,75,50,26,60,74,44,69,59,15, 3, 2,21,65,27,22,76,77,53,51,32,31,19,62, 0,58,25, 6,42,49,17,54, 5,24,78,68,57,38,39,47, 33,63,57,10,18,21, 7,41,34,71,51,68,70,52, 0, 4,13,62,69,30,15,14,67,35,29, 1,78,54, 5,24,64, 3,60,65,20,48,50,45,31,17,79,39,38, 28,11,36,49,12,72,66,77,44, 6,40,59,61,53,22,37,16,43,19, 9,55,46,74,73,26, 8,23,75, 2,32,27,58,47,56,25,42,76, 72,69,52, 4,59,22,14, 3,70,26,61,36,63,29,53,79,49,15,62,33, 9,66, 0,16,44,45,58,41,43,24,71,27,23,67,21,25,32,46,39,55, 64,50,35,57,60,13,19,11, 1,12,37, 5,56,10,20,75,30,68, 6,28,47,65,34,40, 8,76,78,48,77, 7, 2,74,51,73,38,17,42,31,54,18, 15,20,40, 9,61,45,32,63,28,64,37,34, 4, 3,65,27,25,66,30, 5,24,29,70,26,59,22,77,54,78,11,19,60,33, 8,55,10,31,46,13,16,69, 51,73,44,39,53, 1,17,72,48,57,74,56,43,36, 2,76,68,38,14,79,52, 0,21,12,49,18,50,41, 6,42, 7,62,71,75,47,58,35,67,23, 43,40, 9,64,62,17, 3,72,22,52,20,63,29,37, 1,74,79,76,57,59,77, 2,33,25,58,12,75,47,31,26, 8,38,27,45,55, 6,19,67,69,48,61,23,32, 5,15,66,14,30,36, 7,24,34,71,42,73,49, 0,39,51,70,78, 4,41,56,28,50,21,18,35,10,68,60,44,53,46,11,16,13,65,54, 57,34,72,75,79, 8,53,60,43,64,41,35,25,16,24,70, 5, 4,76,46,44,74,45,32, 1,49,39,37,19,21,65,68,78,27,47, 2,22,11, 0,20,13,12,18, 3,66,42,36,62,17,54,29,71,26,56,6,40,38,50,61,73,77,59,67,63,23,10,15,14,28,33,69,55,9,48,58,30,51,31,52,7, 48,30,19,59,52,26, 2,37,22,13,40,42, 4,72,63,28,71,56,21,73,79,15,50,20,64,58,70,47,53,65,27, 7,25,76, 5,61,45,67, 9, 0,18,60,31,29,14, 6,17, 3,57,68,24,43,34,66,49,33,36,55,35,69,46,62,16,39,78, 1,32,75,51,11,12,10,77,23,54, 8,74,44,38,41,

29, 3,54,68,16, 1,55,32,69,67,19,75,37,46,71,33,62,30,57,27,58,53,42,52,38,28,56,73,63,24,25,39, 8,79,18, 2,34,36,10,12, 15,11,50,49,51,22,14,70,66,23,31,44,61,74,17,76,7,77,48,43,5,4,65,35,78,9,13,6,45,26,40,41,64,47,20,72,21,59,0,60, 19,44,49,56, 5,14,40,63,66, 0,11,51,25,13,78, 3,74,20, 6,70,64,65, 9,23,37,67,36,38, 8,59,60,18,21, 2,42,35,53,43,75,62, 39,33,12,79,73,68,32,30,16,7,57,31,41,26,71,22,17,24,47,10,15,34,61,55,46,72,54,77,50,1,29,27,76,45,52,69,28,58,48,4, 16,13, 0,55,40,42,15, 1,23,32,47,63,68,73,52,74,10,78,21, 8,43,66,39,11,29,37,45,53,27,36,41,49,54,12,69,76, 2,64,19,60, 3,44,34,79,22, 6,20,58,14,56,71, 4,72,70,25,48,57,67,46,65,31, 5,75,33,38,18,30,35, 9,59,62,17, 7,28,61,50,77,51,24,26, 39,18,56,32,11,54,73,72,21,24,41,14,76,7,9,70,71,12,58,38,57,50,67,51,28,26,79,77,33,53,35,63,8,37,68,64,75,20,62,16,55,2,10, 4,42,69,22,13,43,48,52,46, 0,23,60, 6,15,40,17,36,29, 3,31,19,25,27,44,49,59, 5,65,66,45,30, 1,47,34,74,61,78, 7,23,74,78,56,53,0,54,20,9,50,73,6,35,45,33,42,52,18,1,65,72,55,79,77,58,17,34,22,30,36,70,59,26,57,21,71,44,43,28,75,10,13, 8,63,64, 4, 5,27,39,31,62,25,60,48, 3,12,11,14,66,16,37,40,38, 2,46,67,24,51,49,15,69,68,76,41,47,19,61,32,29, 44.42.17.12.66.11, 0,69,49,67,53,65,61, 9,72,10,18,68,25,58,22,75,51,16,64,19,79,55,27,15,77,23,54,47, 7,50,60,41,57,73,34,56, 2,21,62, 6,26, 5,13,40, 1, 4,29,38,33,31,78,39,46,37,24,63,20,74,59,36,45, 3,35,70,30,43,71,32,14, 8,28,48,76,52, 48,77,61,65, 8,23,55,37,21,28,36,18,26,24, 1,43,57, 9, 4,53,78,67,79,63,50,72,29,58,59,20,60,46, 0,44,70,30,15, 5,49,73,54,40,71,64,10,69, 3,56,17,41,76,42,34,32,19,27,47,62, 7,25,51,68,31,74,13,14,38,35,75, 2,22,45, 6,39,11,16,33,66,12,52, 38,77,71,48,20,52,25,36,27,79,22,16, 2,18,32,46,39,59,73, 1,75,78,57,44,42, 4,10, 9,58,60,61,17,15,50,51,31,35,54,63,62, 72,65,19,53,14,56,34,26, 6,67,24,70,66,43,29,23,76,49,37, 7,74,28,12,13, 8,40,47,30,11, 5,69,45, 3,68, 0,64,21,41,33,55, 73,57,21,48,53,12,36,17,58,78,75,7,50,64,8,0,29,77,22,55,54,61,38,59,70,24,68,13,6,11,35,41,44,45,52,76,23,60,39, 9,67,18,43,66, 2,10,72,28,47,15,62,42,56,51,33,65,74, 5,69,40,25,20, 1,34,16,27, 3,37,19,14,26,32,79, 4,30,46,49,31,71,63, 58,29,10,41,51,59, 0,13, 5,63, 4,37, 8, 3,61,54,79,47,67,23,48,77,52,71, 9, 6,11,68,25,60,15,62,65,32,21,70,73,55,46,22,56,45, 40,38,64,33,75,18,57,69,53,76,16,42,35,19, 7,34,74,78,44,72,14, 2,17,24,12,27,26,50,66,36,20,43,49,31, 1,30,39,28, 73.36.69.25.66.45.11.29.27.42.23.10.22.5.3.6.38.50.75.7.55.43.79.16.47.63.48.68.72.58.9.67.60.40.37.35.14.15.4.46.52.65. 0,53,18,32,19,64,17,44,77,8,57,74,21,70,20,28,62,54,39,12,61,13,26,30,49,41,59,1,78,76,34,71,24,33,56,31,2,51, 22,52,71,57,31, 1,36,50,28,63,30,21, 3,13,16,10,58, 5,35,23,29,60,20,73,24,79,75, 8,51,66,26,62,43,45,78,27,49,25,41, 0,11,38,67,14, 2,61,55,46,53,64,42,47,59, 6,65,40,39, 9, 4,54,70,69,68,19,72,17,34,15, 7,18,37,74,76,32,12,44,33,56,77,48, 29,44,76, 9,30,25,60,35,45, 5,22,15,40,66,34,59,18,13,58, 3,33,65,14,36,75,72,39,20,69,55,38,79,26,17,50,48,54,78, 52,31,43,27,32,68, 2,67,42, 1,71,46, 4,41,53,37,74,12, 6,57,28,16,56,23,64,19, 7,10,47,21,63,70,62,11,24, 0,49,77, 8,61,51,73, 25,38,27,56,65,49,42,28,10,76,37,34,74,57,59,67, 8,47,26,15,33,23,40,71,50, 2,46,21,19, 6, 4, 5, 9,43,18,63,45,73,58,53,14,64, 7, 0,48,20,54,68, 1,52,60,77,22,72,62,51,30,78,11,61,39,36,66,31,32,17,35,79, 3,24,69,13,55,16,44,75,70,41,29,12, 45,71,66,11,54,56, 3,51,35, 0,53,19,21,55,10, 2,73,27,59, 1,31,60,20,62,68,22,38,74,61,50,58,23,24,49,48,28,12,13, 6,44,43,37,25,26,29,75,36,46,32,70,16,76,39,17,30,41,47,67,40,15,78,14,9,8,69,63,79,72,57,33,4,42,34,52,65,77,7,18,5,64, 16.55.63.42.48.27.38.28.57.72.62.19.79.33.15.77.51. 1.36. 7.78.52.29.25. 2.59.18.12.39.64.46. 3.24.43.60.34.61.40.54.14.44.74. 5,47,75, 9,49,23,68,58,65,26,56,22,37,20,66,21, 6,71, 0,17,73,50,41,10,35, 8, 4,70,30,67,69,76,53,32,13,45,31,11, 49.60, 4.13.30, 20.78, 3.37, 5.50, 43.73, 75, 6.40, 23, 29, 11, 53, 27, 31, 34, 74, 64, 41, 36, 17, 44, 48, 77, 21, 16, 18, 58, 79, 57, 10, 7,22,54,52,35,25,26,33,28,71,12,69,63,65,24,59,47,76,15,56,72, 8,46,39,42,45,55,38,66,14,67,62, 2,51,68, 1,70,32,19, 0, 9,61, 19, 3,75,59,10, 8,14,11,12,39,67,41,28,74,76,73, 7,33,35,55,65,15,77,49,24,37,13,44,30,45,47, 4,70,36,50,69, 5,62,34,22, 0,61, 1,71,42,54,20,60,40,53,57,26,72,46,31,63,52,18,17,29,21,9,58,66,51,6,38,23,16,64,32,27,79,2,68,48,78,56,43,25, 27,71,73,66,12,47,44,63,33,11,61,72,46,69,31,48, 3,16,65,24,40,49,77, 1,58,70,14,52,57,21, 8,64,13,59,10,55,23, 0,17,53,41,54,68,78,67,38,39, 9,51,76,45, 7,62,60, 4,22,15,37,29,25,34,26,28,79, 5,20,74,18,56,32,42,43, 6,19,75,50,30,35,36, 2, 27,20,10,54, 8,57,40, 0,22,12,47,36,75, 7,35,45,19,34,72,58,74,23,16,33,64,14,78,39,59,24,11,26, 6,28,32,43,73,38,67,25,70,71, 42,66, 3,46, 9,60,15, 2,51,21,79,53,30,65,41,68,13,56,76,77, 4, 5,37,44,49,52,63,17,29,31,50,61,69,62,55,48, 1,18, 56,59,62,67,26,44,10,18,57,55,70,63,78,73,0,40,34,29,30,42,11,68,72,64,12,35,50,9,39,17,27,61,24,2,31,47,41,53,5,33,49,54, 1,45,15,25,77, 8,20,75,60,16,32,36,28,52,38,43,74,71,37,21,13,66,79,65, 7,19,48,23,22, 3,46,58,76,14,69,51, 4, 6, 8,56,60,48,53, 2,40,66,29,10,61,59,11,67,35,51,14,36,63,76,54,44,69, 0, 3,15,32,79,73,58,72,23,12,71,57,50,19,52, 7,75,77,45,70,33, 1,55,68,22,42,49,38, 4,47,24,30,17,37,27,43,39,78,34,65,28,13,64, 9,25, 6,20,46,74,62,31, 5,41,16,21,26,18,

40,73,77,48,59,37,7,56,60,58,79,13,6,21,30,23,47,9,42,36,74,72,66,3,38,25,45,0,39,67,34,31,61,29,33,75,27,1,68,15,41,5,50,78,69,63,76,71,51,44,52,12,54,19,32,8,11,64,4,28,65,26,49,2,55,46,43,62,35,17,70,22,20,57,14,24,10,16,18,53,
34,16,44,30,25,78,29,0,71,54,49,47,14,26,2,20,22,61,53,36,59,27,38,42,43,52,74,39,24,4,70,63,45,46,64,56,1,66,35,5,68,51,65,72,28,19,7,48,18,13,33,21,60,50,40,76,37,55,32,79,77,69,3,23,75,58,6,41,62,10,67,15,8,11,73,12,57,9,17,31,
35,34,68,54,11,13,41,33,52,16,63,72,60,46,48,69,28,40,12,73,2,0,29,53,37,9,5,4,14,78,39,50,47,70,45,64,7,25,79,18,21,1,36,67,55,42,20,6,76,26,59,51,19,8,24,65,43,44,49,57,56,17,38,61,27,77,32,66,30,74,23,10,15,75,31,58,62,71,22,3,
35,16,41,21,28,79,3,32,27,2,51,48,31,44,18,39,13,74,6,59,76,58,8,9,14,68,63,62,24,0,15,22,49,23,47,65,33,78,70,56,66,1,42,10,17,38,40,67,64,69,12,19,71,36,11,52,50,72,77,7,53,4,26,46,43,37,34,73,20,45,57,54,55,30,5,25,60,75,61,29,
1,30,52,57,60,34,67,10,72,5,19,27,21,44,4,74,61,47,64,39,40,28,45,26,6,42,53,8,3,55,37,36,73,24,15,0,56,13,77,14,16,25,62,51,70,79,22,18,43,12,17,9,29,65,59,68,63,31,48,32,46,33,58,35,38,41,11,66,7,69,50,23,57,71,2,54,49,76,78,20,
18,34,1,31,14,40,79,74,78,63,70,19,17,12,62,69,9,48,24,77,33,76,20,21,55,64,66,8,51,26,25,2,73,60,49,75,43,29,54,28,53,23,38,45,50,52,35,5,4,22,57,61,68,27,11,3,3,27,2,56,7,41,39,30,36,42,65,58,59,37,47,6,15,0,13,16,46,44,10,67,71,68,69,58,72,26,42,32,38,31,70,67,64,55,13,29,59,33,78,14,66,11,28,48,44,36,75,35,76,5,54,77,8,30,0,37,62,73,21,63,25,34,12,6,23,60,27,53,40,52,56,46,7,1,39,3,41,24,10,20,19,18,57,71,15,51,16,47,43,17,74,2,65,9,45,61,22,79,50,4,49,

B.4 Zpool status for the 80 drive JBOD

The following is the complete 'zpool status' listing for the 80 drive dRAID created in Section A.1.1. The array has 3 distributed spare drives and 7 (8+3) parity groups.

# zpool sta	atus						
pool: MS09							
state: ONI	LINE						
scan: none requested							
config:							
NAME STATE	READ WR	ΓI	Έ	CKSUM			
MS09 ONLIN	1E 0 0 0						
draid3-0	ONLINE	0	0	0			
sdb	ONLINE	0	0	0			
sdd	ONLINE	0	0	0			
sde	ONLINE	0	0	0			
sdg	ONLINE	0	0	0			
sdh	ONLINE	0	0	0			
sdi	ONLINE	0	0	0			
sdk	ONLINE	0	0	0			
sdl	ONLINE	0	0	0			
sdm	ONLINE	0	0	0			
sdo	ONLINE	0	0	0			
sdp	ONLINE	0	0	0			
sdq	ONLINE	0	0	0			
sds	ONLINE	0	0	0			
sdt	ONLINE	0	0	0			
sdu	ONLINE	0	0	0			
sdw	ONLINE	0	0	0			
sdx	ONLINE	0	0	0			
sdy	ONLINE	0	0	0			
sdz	ONLINE	0	0	0			
sdab	ONLINE	0	0	0			
sdac	ONLINE	0	0	0			
sdad	ONLINE	0	0	0			
sdae	ONLINE	0	0	0			
sdc	ONLINE	0	0	0			
sdf	ONLINE	0	0	0			
sdj	ONLINE	0	0	0			
sdn	ONLINE	0	0	0			
sdr	ONLINE	0	0	0			
sdv	ONLINE	0	0	0			
sdaa	ONLINE	0	0	0			
sdaf	ONLINE	0	0	0			
sdag	ONLINE	0	0	0			
sdah	ONLINE	0	0	0			
sdai	ONLINE	0	0	0			
sdaj	ONLINE	0	0	0			
sdak	ONLINE	0	0	0			
sdal	ONLINE	0	0	0			
sdam	ONLINE	0	0	0			
sdan	ONLINE	0	0	0			
sdao	ONLINE	0	0	0			
sdap	ONLINE	0	0	0			
sdaq	ONLINE	0	0	0			
sdar	ONLINE	0	0	0			
sdas	ONLINE	0	0	0			
sdat	ONLINE	0	0	0			
sdau	ONLINE	0	0	0			
sdav	ONLINE	0	0	0			

1		0	0	0	
sdaw	ONLINE	0	0	0	
sdax	ONLINE	0	0	0	
sday	ONLINE	0	0	0	
sdaz	ONLINE	0	0	0	
sdba	ONLINE	0	0	0	
sdbb	ONLINE	0	0	0	
sdbc	ONLINE	0	0	0	
sdbd	ONLINE	0	0	0	
sdbe	ONLINE	0	0	0	
sdbf	ONLINE	0	0	0	
sdbg	ONLINE	0	0	0	
sdbh	ONLINE	0	0	0	
sdbi	ONLINE	0	0	0	
sdbj	ONLINE	0	0	0	
sdbk	ONLINE	0	0	0	
sdbl	ONLINE	0	0	0	
sdbm	ONLINE	0	0	0	
sdbn	ONLINE	0	0	0	
sdbo	ONLINE	0	0	0	
sdbp	ONLINE	0	0	0	
sdbq	ONLINE	0	0	0	
sdbr	ONLINE	0	0	0	
sdo	ONLINE	0	0	0	
	ONLINE				
sdp		0	0	0	
sdq	ONLINE	0	0	0	
sds	ONLINE	0	0	0	
sdt	ONLINE	0	0	0	
sdu	ONLINE	0	0	0	
sdw	ONLINE	0	0	0	
sdx	ONLINE	0	0	0	
sdy	ONLINE	0	0	0	
sdz	ONLINE	0	0	0	
sdab	ONLINE	0	0	0	
sdac	ONLINE	0	0	0	
sdad	ONLINE	0	0	0	
sdae	ONLINE	0	0	0	
sdc	ONLINE	0	0	0	
sdf	ONLINE	0	0	0	
sdj	ONLINE	0	0	0	
sdn	ONLINE	0	0	0	
sdr	ONLINE	0	0	0	
sdv	ONLINE	0	0	0	
sdaa	ONLINE	0	0	0	
sdaf	ONLINE	0	0	0	
sdag	ONLINE	0	0	0	
sdah	ONLINE	0	0	0	
sdai	ONLINE	0	0	0	
sdaj	ONLINE	0	0	0	
sdaj sdak	ONLINE	0	0	0	
sdal	ONLINE	0	0	0	
sdan	ONLINE	0	0	0	
sdan	ONLINE	0	0	0	
sdao	ONLINE	0	0	0	

sdap	ONLINE	0	0	0
sdap	ONLINE	0	0	0
sdar	ONLINE	0	0	0
sdas	ONLINE	0	0	0
sdat	ONLINE	0	0	0
sdau	ONLINE	0	0	0
sdav	ONLINE	0	0	0
sdaw	ONLINE	0	0	0
sdax	ONLINE	0	0	0
sday	ONLINE	0	0	0
sdaz	ONLINE	0	0	0
sdba	ONLINE	0	0	0
sdbb	ONLINE	0	0	0
sdbc	ONLINE	0	0	0
sdbd	ONLINE	0	0	0
sdbe	ONLINE	0	0	0
sdbf	ONLINE	0	0	0
sdbq	ONLINE	0	0	0
sdbh	ONLINE	0	0	0
sdbi	ONLINE	0	0	0
sdbj	ONLINE	0	0	0
sdbk	ONLINE	0	0	0
sdbl	ONLINE	0	0	0
sdbm	ONLINE	0	0	0
sdbn	ONLINE	0	0	0
sdbo	ONLINE	0	0	0
sdbp	ONLINE	0	0	0
sdbq	ONLINE	0	0	0
sdbr	ONLINE	0	0	0
sdbs	ONLINE	0	0	0
sdbt	ONLINE	0	0	0
sdbu	ONLINE	0	0	0
sdbv	ONLINE	0	0	0
sdbw	ONLINE	0	0	0
sdbx	ONLINE	0	0	0
sdby	ONLINE	0	0	0
sdbz	ONLINE	0	0	0
sdca	ONLINE	0	0	0
sdcb	ONLINE	0	0	0
sdcd	ONLINE	0	0	0
spares				
\$draid3	-0-s0 AV	VA:	ΓL	
\$draid3	-0-s1 AV	VA:	ΓL	
\$draid3	-0-s2 AV	VA:	ΙL	
errors: No	known d	lat	a	errors

Appendix C. References

- [1] I. Huang, "Declustered RAIDZ Scope Statement," Argonne Contract number: B609815, MS6, 2015.
- [2] I. Huang, "Declustered RAIDZ Solution Architecture," Argonne Contract number: B609815, MS6, 2015.
- [3] G. Alvarez, W. Burkhard, L. Stockmeyer and F. Cristian, "Declustered Disk Array Architectures with Optimal and Near-optimal Parallelism," in *Proceedings of the 25th International Symposium on Computer Architecture, ISCA '98*, 1998.
- [4] M. Holland and G. Gibson, "Parity Declustering for Continuous Operation in Redundant Disk Arrays," in *Proceedings of the fifth international conference on Architectural support for programming languages and operating systems*, 1992.
- [5] E. Riedel, "http://www.cs.cmu.edu/~riedel/ftp/Declustering/BD_database.tar.Z," [Online].
- [6] T. Scharz, J. Steinberg and W. Burkhard, "Permutation Development Data Layout (PDDL)," in *Proc 5th IEEE Symp. on High Performance Computer Architecture, HPCA'99*, 1999.
- [7] A. Brinkmann, K. Salzwedel and C. Scheideler, "Efficient, distributed data placement strategies for storage area networks (extended abstract)," in *Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA '00*, 2000.
- [8] J. R. Santos, R. R. Muntz and B. Ribeiro-Neto, "Comparing random data allocation and data striping in multimedia servers," *SIGMETRICS Perform. Eval. Rev.*, vol. 28, pp. 44-55, 2000.
- [9] A. Goel, C. Shahabi, S.-Y. D. Yao and R. Zimmermann, "SCADDAR: An efficient randomized technique to reorganize continuous media blocks," in *Proceedings of the 18th International Conference on Data Engineering, ICDE '02*, 2002.
- [10] B. Seo and R. Zimmermann, "Efficient disk replacement and data migration algorithms for large disk subsystems," *Trans. Storage,* vol. 1, pp. 316-345, 2005.
- [11] D. Brady, "Lustre Sreaming Improvements High Level Design," Argonne Contract number: B609815, MS3, 2015.
- [12] "Knuth Shuffle," [Online]. Available: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle. [Accessed 2015].