

dRAID: Declustered RAID for ZFS

Installation and Configuration Guide
High Performance Data Division

INTEL FEDERAL, LLC PROPRIETARY
September 2017

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 2 of 96

Generated under Argonne Contract number: B609815

DISTRIBUTION STATEMENT: None Required

Disclosure Notice: This presentation is bound by Non-Disclosure Agreements between Intel Corporation, the
Department of Energy, and DOE National Labs, and is therefore for Internal Use Only and not for distribution
outside these organizations or publication outside this Subcontract.

USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

Export: This document contains information that is subject to export control under the Export Administration
Regulations.

Intel Disclaimer: Intel makes available this document and the information contained herein in furtherance of
CORAL. None of the information contained therein is, or should be construed, as advice. While Intel makes every
effort to present accurate and reliable information, Intel does not guarantee the accuracy, completeness, efficacy,
or timeliness of such information. Use of such information is voluntary, and reliance on it should only be
undertaken after an independent review by qualified experts.

Access to this document is with the understanding that Intel is not engaged in rendering advice or other
professional services. Information in this document may be changed or updated without notice by Intel.

This document contains copyright information, the terms of which must be observed and followed.

Reference herein to any specific commercial product, process or service does not constitute or imply
endorsement, recommendation, or favoring by Intel or the US Government.

Intel makes no representations whatsoever about this document or the information contained herein. IN NO
EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL
DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS
INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Company Name: Intel Federal, LLC

Company Address: 4100 Monument Corner Drive, Suite 540 Fairfax, VA 22030

Copyright © 2015 - 2016, Intel Corporation.

Technical Lead: (Name, E-mail, Phone) _Al Gara, alan.gara@intel.com, 408-765-0996

Contract Administrator: (Name, E-mail, Phone) Aaron Matzkin, aaron.matzkin@intel.com, 503-712-0833

Program Manager: (Name, E-mail, Phone) Jacob Wood, jacob.r.wood@intel.com, 503-264-2219

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 3 of 96

Document Revision History
Revision Number Date Comments

0.8 September 2017 Initial version.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 4 of 96

Contents
1 Introduction .. 7

1.1 Terms used in this Document ... 8
1.2 Additional Documentation .. 9
1.3 Software Requirements ... 9
1.4 Hardware Requirements .. 10

2 Configuring dRAID for ZFS .. 11

2.1 Introduction ... 11
2.1.1 raidz vs dRAID .. 11
2.1.2 Recommended Reading ... 12

2.2 Using dRAID .. 12
2.2.1 Create a dRAID VDEV .. 12
2.2.2 Sequential Rebuild .. 15
2.2.3 dRAID-aware Spare Space Rebalancing ... 18
2.2.4 Troubleshooting .. 19

2.3 Administration of dRAID for ZFS ... 20
2.3.1 Introduction ... 20
2.3.2 Command Line Interface .. 20

2.4 Tuning dRAID for ZFS ... 20

3 ZED Fault Handling .. 21

3.1 Introduction ... 21
3.2 Spare Device Matching .. 22
3.3 Multi-path Support .. 23
3.4 ZED Watchdog Timer .. 23
3.5 Multi-Fault Support ... 23

4 Metadata Isolation ... 24

4.1 Introduction ... 24
4.2 Dedicated VDEVs .. 26
4.3 Segregated VDEVs .. 26

4.3.1 Segregation Percentage ... 26
4.3.2 Ditto Block Policy .. 27

4.4 VDEV Changes ... 28
4.4.1 Feature Flag Encapsulation ... 28
4.4.2 VDEV Allocation Bias ... 28
4.4.3 Metaslab Allocation Bias ... 28
4.4.4 VDEV Allocation Stats .. 29

4.5 Notes on Metadata Isolation ... 31

5 Validation.. 32

5.1 Building and installing the ZFS Test Suite .. 32
5.2 Running the ZFS Test Suite .. 32
5.3 Test Results ... 33
5.4 ZTest/zloop Verification Tests ... 34

Appendix A. Usage Examples ... 35

A.1 Usage Examples of dRAID for ZFS .. 35
A.1.1 Arbitrary Pool Configuration ... 35

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 5 of 96

A.1.2 Dynamic Rebuild Throttling .. 36
A.1.3 Rebuild Stop and Resume .. 38
A.1.4 Rebalance .. 40

A.2 Usage Examples of Metadata Isolation with Lustre* and dRAID 41
A.2.1 Hybrid Metadata/Smallblock Isolation with dRAID VDEVs 41
A.2.2 Observing Metaslab Regions ... 43
A.2.3 Observing Free Space Fragmentation .. 45
A.2.4 Observing Allocations by Category .. 47

A.3 Usage Examples of End-to-End 16MB File Block I/Os 48
A.3.1 Configuring the file system for 16MB I/Os .. 48
A.3.2 Lustre OSS ... 49
A.3.3 Prepping Lustre Counters ... 50
A.3.4 BRW Stats .. 51

A.4 End to End Streaming ... 52
A.4.1 Lustre Client RPC stats .. 54
A.4.2 Lustre Server BRW stats .. 54
A.4.3 ZFS I/O Sizes ... 55
A.4.4 Linux Disk stats and Bandwidths ... 56
A.4.5 Linux disk stats for a random workload .. 57

A.5 Fragmentation Improvements .. 59
A.5.1 File System Fragmention .. 59
A.5.2 Performance Improvements with Segregated Metadata 60

A.6 Examples of ZED Fault Handling using dRAID for ZFS 62
A.6.1 Multi-Fault Handling .. 62

Appendix B. dRAID Configuration Examples ... 72

B.1 ‘zdb –m’ for a dRAID pool without segregation ... 72
B.2 ‘zdb –m’ for a dRAID pool with segregation enabled 80
B.3 draidcfg output for the 80 drive demonstration (80.nvl) 89
B.4 Zpool status for the 80 drive JBOD ... 92

Appendix C. References ... 96

Tables
Table 5-1. zTest dRAID Options ... 34
Table 5-2. I/O Size Evaluation Tools ... 53

Figures
Figure 2-1. ZFS Commands Modified for Metadata Isolation ... 20
Figure 3-1. ZED Architecture ... 21
Figure 3-2. ZED FMA Components .. 22
Figure 4-1. Transition from Unmodified RAIDZ to Hybrid Mirror Configuration 25
Figure 5-1. Dynamic Rebuild Throttling ... 37
Figure 5-2. Rebalance to a Replacement Drive ... 40
Figure 5-3. Size Distribution of ZFS Write I/O .. 55
Figure 5-4. Read/Write Disk Stats for Sequential Workload .. 56

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 6 of 96

Figure 5-5. Write/Read Bandwidth for Sequential Workload ... 57
Figure 5-6. Read/Write Disk Stats for Random Workload ... 58
Figure 5-7. Write/Read Bandwidth for Random Workload .. 59
Figure 5-8. Fragmentation Impact on RAIDZ1 Performance ... 60
Figure 5-9. Fragmentation Comparison of Segregated and Unsegregated dRAIDs 61
Figure 5-10. Performance Impact of Segregation on Fragmented File System 62

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 7 of 96

1 Introduction
In large-scale storage configurations needed to meet the IO requirements of future HPC
systems, disk failures are inevitable and viewed as a normal incident rather than an
exceptional event.

When disk failures happen, it is important that RAID parity reconstruction complete as quickly
as possible. Shorter rebuild times significantly reduce exposure to multiple concurrent disk
failures, which could lead to data loss. It is also important that the RAID rebuilding process
minimally affect the application IO. A drop in IO performance would cause applications to run
longer or even fail to complete in their allotted time window.

The process of rebuilding a “traditional” RAID array, when replacing a failing/failed drive by a
new one, consists of reading all the data, block-by-block, on all the surviving disks in the array,
reconstructing the original blocks of the failed drive, and then writing the reconstructed data
to the replacement drive. After this process is complete, the array is restored to its original full
redundancy.

In ZFS, there is a similar and equivalent process, called resilvering, which is implemented
differently from traditional RAID reconstruction, as volume management is a built-in part of
ZFS. This process starts by traversing the ZFS block pointer tree to discover all the blocks of
the ZFS pool that were affected by the failed drive. Upon reaching one of these blocks, the
block is read, or reconstructed if necessary from the redundant/parity information, its
checksum is verified, and the missing data or parity from the failed drive is written to free
blocks on a new drive.

In both cases, the speed of rebuilding or resilvering is bounded by the write throughput of a
single replacement drive. As a result, the total resilver time will grow at least linearly (often
much worse) with drive capacity. As drive capacity continues to grow with little increase in
drive throughput, rebuild time can increase significantly. For example, it would take about 27
hours to rebuild a 10TB drive at 100MB/s. Since idle time is rare, a drive failure and
subsequent rebuild process can significantly affect system performance.

Parity declustered RAID (dRAID) for ZFS distributes data, parity, and spare capacity across all
drives in a pool so that they all participate in the rebuild process equally. Since the pool is
many times larger than the redundancy group size, aggregate read performance during
reconstruction is correspondingly increased. In addition, since reconstructed data is written to
spare space distributed across all drives, the bottleneck of having to write a single
replacement drive to restore redundancy is eliminated.

Though declustered RAID for ZFS uses the existing RAIDZ code to calculate parity and
reconstruct lost blocks, we call the solution dRAID to make clear the distinction between the
layout of data, parity, and spare space in this design and the layout of data and parity with
existing RAIDZ. The dRAID solution makes possible a mechanism to further speed up recovery
after a drive failure by decoupling the recreation of redundancy from the verification of the
recreated blocks to ensure that no drive in the storage array is idle during the rebuild.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 8 of 96

1.1 Terms used in this Document
The following terms and abbreviations are used in this document.

Term Definition

ZFS A combined file system and logical volume manager.

RAIDZ A generic term to refer to ZFS RAIDZ1, RAIDZ2, RAIDZ3, and mirror, when there is no
need to distinguish between them. Otherwise, the more specific terms are used. The
generic term RAID is also used when there is no need to distinguish between traditional
RAID and RAIDZ.

VDEV A "virtual device" describes a single device or a collection of devices organized
according to certain performance and fault characteristics. ZFS currently supports the
following VDEV types: disk, file, mirror, RAIDZ, spare, log, and cache.

ZFS Pool Unlike traditional file systems which reside on single devices and thus require a volume
manager to use more than one device, ZFS file systems are built on top of virtual
storage pools called ZFS pools. A ZFS Pool is a constructed of a set of VDEVs.

dRAID A modification of RAIDZ, as defined in this document, to implement declustered RAID
for ZFS using fixed stripe-width redundancy groups to improve RAIDZ resilver speed.
This is a generic term that can refer to ZFS dRAID1 (single parity), ZFS dRAID2 (double
parity), ZFS dRAID3 (triple parity), and ZFS dRAIDM (mirror).
Though dRAID will use the existing RAIDZ code to calculate parity and reconstruct lost
blocks, we call the solution dRAID to make clear the distinction between the layout of
data, parity, and spare space in this design and the layout of data and parity with
existing RAIDZ.

Drive Slice All drives in a dRAID VDEV are divided into equal sized units called slices. A slice is the
basic unit of parity declustering. Slice size must be a multiple of hardware sector size of
the drive.

Metaslab An allocation region in a VDEV. ZFS divides a top-level VDEV into equal-sized regions
called metaslabs. A ZFS block cannot cross metaslab boundary.

Permutation Permutation and developed permutation is derived from the base permutation.

Redundancy
Group

The redundancy group is composed of data and parity units that RAIDZ generates from
the file block it receives from ZFS. Reconstruction of the group is possible if one or
more (depending on the RAIDZ type) of its units are unreadable.

Resilver The process of reconstructing data/parity on a failed drive in a RAIDZ group to a
replacement drive, or failed drive in a dRAID group to spare space.

Scrub The process of examining all ZFS blocks in a pool to verify block checksums. For
replicated VDEVs (mirror, RAIDZ, or dRAID), ZFS automatically repairs any damage
discovered.

Spacemap Persistent on-disk data structure that keeps track of allocated space in a metaslab.
There is one spacemap for each metaslab.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 9 of 96

Term Definition

Spare
Rebalance

The process of copying reconstructed data/parity from previous spare blocks to a
replacement drive so that distributed spare blocks become available again.

Spare Space This is spare capacity distributed over all drives in a dRAID VDEV, reserved for recovery.
For the sake of simplicity hereafter in this document, N spare drives is used as a
shorthand for distributed spare space with sufficient capacity to rebuild data on N failed
drives.

Uberblock A VDEV label contains an array of uberblocks. The uberblock is the portion of the label
containing information necessary to access the contents of the pool. Only one
uberblock in the pool is active at any point in time. The uberblock with the highest
transaction group number and valid SHA-256 checksum is the active uberblock.

Unit A unit is a portion of a redundancy group written to a drive slice. A redundancy group is
composed of data and parity units.

VDEV Label Each physical VDEV within a ZFS pool contains four copies of a 256KB structure called a
VDEV label, two at the beginning of the VDEV and two at the end. The VDEV label
contains information describing this particular physical VDEV and all other VDEVs
which share a common top-level VDEV as an ancestor.

DVA The Data Virtual Address is the ZFS notion of block address. It consists of two parts:
VDEV, and offset. It determines the physical location of a ZFS block on a top-level
VDEV.

ZED ZFS Event Daemon monitors events generated by the ZFS kernel module. When a
zevent (ZFS Event) is posted, ZED will run any ZEDLETs (ZFS Event Daemon Linkage for
Executable Tasks) that have been enabled for the corresponding zevent class.

1.2 Additional Documentation
Refer to the following documentation for architecture and description:

Document Location

Scope Statement

Solution
Architecture

1.3 Software Requirements
• ZFS on Linux version 0.8.0.
• Lustre* version 2.10

NOTE: While Lustre is not required for dRAID to be used in a ZFS environment, it is
required for some of the features described in this document.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 10 of 96

1.4 Hardware Requirements
The hardware used must be compliant with the minimum RAIDZ requirements (Minimum
Drives= (5+1) single parity).

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 11 of 96

2 Configuring dRAID for ZFS

2.1 Introduction
This chapter describes the setup and configuration of dRAID for ZFS.

2.1.1 raidz vs dRAID

ZFS users are most likely very familiar with raidz already, so a comparison with dRAID may
help. The illustrations below are simplified, but sufficient for the purpose of a comparison. For
example, 31 drives can be configured as a zpool of six raidz1 VDEVs and a hot spare:

As shown above, if drive 0 fails and is replaced by the hot spare, only five out of the 30
surviving drives will work to resilver: drives 1-4 read, and drive 30 writes.

The same 30 drives can be configured as 1 dRAID1 VDEV of the same level of redundancy (i.e.
single parity, 1/4 parity ratio) and single spare capacity:

The drives are shuffled in a way that, after drive 0 fails, all 30 surviving drives will work
together to restore the lost data/parity:
• All 30 drives read, because unlike the raidz1 configuration shown above, in the dRAID1

configuration the neighbor drives of the failed drive 0 (i.e. drives in a same data+parity
group) are not fixed.

• All 30 drives write, because now there is no dedicated spare drive. Instead, spare blocks
come from all drives.

To summarize:
• Normal application IO: dRAID and raidz are very similar. There is a slight advantage in

dRAID, since there is no dedicated spare drive that is idle when not in use.
• Restore lost data/parity: for raidz, not all surviving drives will work to rebuild, and in

addition, it is bounded by the write throughput of a single replacement drive. For dRAID,
the rebuild speed will scale with the total number of drives because all surviving drives will
work to rebuild.

The dRAID VDEV must shuffle its child drives in a way that regardless of which drive has failed,
the rebuild IO (both read and write) will distribute evenly among all surviving drives, so the

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 12 of 96

rebuild speed will scale. The exact mechanism used by the dRAID VDEV driver is beyond the
scope of this simple introduction here. If interested, please refer to the recommended
readings in the next section.

2.1.2 Recommended Reading

Parity declustering (the term used for shuffling drives) has been an active research topic, and
many papers have been published in this area. The Permutation Development Data Layout is a
recommended paper to begin. The dRAID VDEV driver uses a shuffling algorithm loosely
based on the mechanism described in this paper.

2.2 Using dRAID
The dRAID code will be included in the ZFS on Linux distribution. Build spl and zfs with
configure, and install. Then load the zfs kernel module with the following options:
• zfs_vdev_scrub_min_active=2

zfs_vdev_scrub_max_active=10
zfs_vdev_async_write_min_active=8:
These options help dRAID rebuild performance.

• draid_debug_lvl=5:
This option controls the verbosity level of dRAID debug traces, which is very useful for
troubleshooting.

2.2.1 Create a dRAID VDEV

Unlike a raidz VDEV, before a dRAID VDEV can be created, a configuration file must be created
with the draidcfg command:
draidcfg -p 1 -d 4 -s 2 -n 17 17.nvl
Not enough entropy at /dev/random: read -1, wanted 8.
Using /dev/urandom instead.
 Worst (3 x 5 + 2) x 544: 0.882
Seed chosen: f0cbfeccac3071b0

The command in the example above creates a configuration for a 17-drive dRAID1 VDEV with
four data blocks per strip and two distributed spares, and saves it to file 17.nvl.

Options:
• p: parity level, can be 1, 2, or 3.
• d: # data blocks per stripe.
• s: # distributed spare
• n: total # of drives
• It's required that: (n - s) % (p + d) == 0

Note:
• Errors like "Not enough entropy at /dev/random" are harmless

http://www.cse.scu.edu/%7Etschwarz/TechReports/hpca.pdf

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 13 of 96

• In the future, the draidcfg may get integrated into zpool create so there would be no separate
step for configuration generation.

The configuration file is binary, to examine the contents:
draidcfg -r 17.nvl
dRAID1 vdev of 17 child drives: 3 x (4 data + 1 parity) and 2 distributed
spare
Using 32 base permutations
 1,12,13, 5,15,11, 2, 6, 4,16, 9, 7,14,10, 3, 0, 8,
 0, 1, 5,10, 8, 6,15, 4, 7,14, 2,13,12, 3,11,16, 9,
 1, 7,11,13,14,16, 4,12, 0,15, 9, 2,10, 3, 6, 5, 8,
 5,16, 3,15,10, 0,13,11,12, 8, 2, 9, 6, 4, 7, 1,14,
 9,15, 6, 8,12,11, 7, 1, 3, 0,13, 5,16,14, 4,10, 2,
 10, 1, 5,11, 3, 6,15, 2,12,13, 9, 4,16,14, 0, 7, 8,
 10,16,12, 7, 1, 3, 9,14, 5,15, 4,11, 2, 0,13, 8, 6,
 7,12, 4,13, 6,11, 9,15,14, 2,16, 3, 0, 1,10, 5, 8,
 10, 5, 8, 2, 1,11,16,15,12, 3,13, 4, 0, 7, 9, 6,14,
 1, 6,15, 0,14, 5, 9,11, 8,16,10, 2,13,12, 3, 4, 7,
 14, 4, 2, 0,12, 7, 3, 6, 8,13,10, 1,11,16,15, 9, 5,
 6,14, 8,10, 1, 0,15, 4, 5, 3,16,13, 9,12, 2, 7,11,
 13, 5, 8,14, 1,10,16,11,15, 7, 0,12, 2, 9, 4, 6, 3,
 9, 6, 3, 7,15, 1, 4, 8,14, 5, 0, 2,16,10,12,11,13,
 12, 0, 6, 7, 1, 9,14, 8,11,16, 4, 2,13,15, 3, 5,10,
 14, 6,12,10,15,13, 7, 0, 3,16, 5, 9, 2, 8, 4,11, 1,
 15,16, 8,13, 6, 4, 7,11, 1, 2,14,12,10, 5, 9, 3, 0,
 0,11,10,14,12, 1,16, 3,13, 9, 5, 7, 2, 4, 6,15, 8,
 2,10,12, 4, 3, 5,15, 1,11, 0, 7,13, 6, 9,14, 8,16,
 11, 8,16,12, 6,13,10, 9, 2, 7, 3, 4, 5, 0,14,15, 1,
 4,16,12,15,14, 3, 7, 1, 9,10, 6, 8,11, 0,13, 2, 5,
 5,16,13,11, 4, 6, 7,12, 0, 9,15, 1,14, 3, 8,10, 2,
 12, 6, 7, 0,10,15, 8, 2,16,14,11, 1, 4, 5, 9,13, 3,
 8, 4, 1,13, 6, 5, 0,15, 7, 3,11,14,16, 9,10,12, 2,
 16,14,15, 2,10,11, 6,13, 4, 9, 8, 0, 5,12, 3, 1, 7,
 9, 6, 8, 3,12,14,16,13,11,10, 4, 5, 7,15, 2, 0, 1,
 3, 9,15, 0, 7, 1, 8,11,12, 2,10, 6,13,16, 5,14, 4,
 0,14, 6,16, 1,10, 9,15,12, 8,11, 3, 2, 7,13, 5, 4,
 12,13, 9, 5,11, 6, 3, 4,14,10, 1, 7, 8, 2, 0,16,15,
 16, 9, 0, 2, 3,10, 1,11, 6, 4,13,12,14, 7, 5,15, 8,
 16, 9, 6, 0, 1, 4,11,14,12, 3, 2,15,13,10, 5, 8, 7,
 7, 8,11,14,10, 6,15,13, 1, 4,16, 9, 2, 3, 0,12, 5,

Now a dRAID VDEV can be created using the configuration. The only difference from a normal
zpool create is the addition of a configuration file in the VDEV specification:
zpool create -f tank draid1 cfg=17.nvl sdd sde sdf sdg sdh sdi sdj sdk sdl
sdm sdn sdo sdp sdq sdr sds sdt

Note:
• The total number of drives must equal the -n option of draidcfg.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 14 of 96

• The parity level must match the -p option (for example, use draid3 for draidcfg -p 3).

When the numbers do not match, zpool create will fail but with a generic error message, which
can be confusing.

Now the dRAID VDEV is online and ready for IO:
zpool status
 pool: tank
 state: ONLINE
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 draid1-0 ONLINE 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdu ONLINE 0 0 0
 sdj ONLINE 0 0 0
 sdv ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0
 sdn ONLINE 0 0 0
 sdo ONLINE 0 0 0
 sdp ONLINE 0 0 0
 sdq ONLINE 0 0 0
 sdr ONLINE 0 0 0
 sds ONLINE 0 0 0
 sdt ONLINE 0 0 0
 spares
 $draid1-0-s0 AVAIL
 $draid1-0-s1 AVAIL

There are two logical spare VDEVs shown above at the bottom:
• The names begin with a '$' followed by the name of the parent dRAID VDEV.
• These spare are logical, made from reserved blocks on all the 17 child drives of the dRAID

VDEV.
• Unlike traditional hot spares, the distributed spare can only replace a drive in its parent

dRAID VDEV.

The dRAID VDEV behaves just like a raidz VDEV of the same parity level (IO to/from it, scrub it,
fail a child drive and it would operate in degraded mode).

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 15 of 96

2.2.2 Sequential Rebuild

When there is a bad/offlined/failed child drive, the dRAID VDEV supports a completely new
mechanism to reconstruct lost data/parity, in addition to the resilver. First of all, resilver is still
supported - if a failed drive is replaced by another physical drive, the resilver process is used
to reconstruct lost data/parity to the new replacement drive, which is the same as a resilver in
a raidz VDEV.

But if a child drive is replaced with a distributed spare, a new process called rebuild is used
instead of resilver:
zpool offline tank sdo
zpool replace tank sdo '$draid1-0-s0'
zpool status
 pool: tank
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Online the device using 'zpool online' or replace the device with
 'zpool replace'.
 scan: rebuilt 2.00G in 0h0m5s with 0 errors on Fri Feb 24 20:37:06 2017
config:

 NAME STATE READ WRITE CKSUM
 tank DEGRADED 0 0 0
 draid1-0 DEGRADED 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdu ONLINE 0 0 0
 sdj ONLINE 0 0 0
 sdv ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0
 sdn ONLINE 0 0 0
 spare-11 DEGRADED 0 0 0
 sdo OFFLINE 0 0 0
 $draid1-0-s0 ONLINE 0 0 0
 sdp ONLINE 0 0 0
 sdq ONLINE 0 0 0
 sdr ONLINE 0 0 0
 sds ONLINE 0 0 0
 sdt ONLINE 0 0 0
 spares
 $draid1-0-s0 INUSE currently in use

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 16 of 96

 $draid1-0-s1 AVAIL

The scan status line of the zpool status output now says "rebuilt" instead of "resilvered", because
the lost data/parity was rebuilt to the distributed spare by a brand new process called "rebuild".
The main differences from resilver are:
• The rebuild process does not scan the whole block pointer tree. Instead, it only scans the

spacemap objects.
• The IO from rebuild is sequential, because it rebuilds metaslabs one by one in sequential

order.
• The rebuild process is not limited to block boundaries. For example, if 10 64K blocks are

allocated contiguously, then rebuild will fix 640K at one time. So rebuild process will
generate larger IOs than resilver.

• For all the benefits above, there is one price to pay. The rebuild process cannot verify
block checksums, since it does not have block pointers.

• Moreover, the rebuild process requires support from on-disk format, and only works on
dRAID and mirror VDEVs. Resilver, on the other hand, works with any VDEV (including
dRAID).

Although the rebuild process creates larger IOs, the drives will not necessarily see large IO
requests. The block device queue parameter /sys/block/*/queue/max_sectors_kb must be tuned
accordingly. However, since the rebuild IO is already sequential, the benefits of enabling larger
IO requests might be marginal.

At this point, redundancy has been fully restored without adding any new drive to the pool. If
another drive is offlined, the pool is still able to do IO:
zpool offline tank sdj
zpool status
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Online the device using 'zpool online' or replace the device with
 'zpool replace'.
 scan: rebuilt 2.00G in 0h0m5s with 0 errors on Fri Feb 24 20:37:06 2017
config:

 NAME STATE READ WRITE CKSUM
 tank DEGRADED 0 0 0
 draid1-0 DEGRADED 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdu ONLINE 0 0 0

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 17 of 96

 sdj OFFLINE 0 0 0
 sdv ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0
 sdn ONLINE 0 0 0
 spare-11 DEGRADED 0 0 0
 sdo OFFLINE 0 0 0
 $draid1-0-s0 ONLINE 0 0 0
 sdp ONLINE 0 0 0
 sdq ONLINE 0 0 0
 sdr ONLINE 0 0 0
 sds ONLINE 0 0 0
 sdt ONLINE 0 0 0
 spares
 $draid1-0-s0 INUSE currently in use
 $draid1-0-s1 AVAIL

As shown above, the draid1-0 VDEV is still in DEGRADED mode although two child drives have
failed and it's only single-parity. Since the $draid1-0-s1 is still AVAIL, full redundancy can be
restored by replacing sdj with it, without adding new drive to the pool:
zpool replace tank sdj '$draid1-0-s1'
zpool status
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Online the device using 'zpool online' or replace the device with
 'zpool replace'.
 scan: rebuilt 2.13G in 0h0m5s with 0 errors on Fri Feb 24 23:20:59 2017
config:

 NAME STATE READ WRITE CKSUM
 tank DEGRADED 0 0 0
 draid1-0 DEGRADED 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdu ONLINE 0 0 0
 spare-6 DEGRADED 0 0 0
 sdj OFFLINE 0 0 0
 $draid1-0-s1 ONLINE 0 0 0
 sdv ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 18 of 96

 sdn ONLINE 0 0 0
 spare-11 DEGRADED 0 0 0
 sdo OFFLINE 0 0 0
 $draid1-0-s0 ONLINE 0 0 0
 sdp ONLINE 0 0 0
 sdq ONLINE 0 0 0
 sdr ONLINE 0 0 0
 sds ONLINE 0 0 0
 sdt ONLINE 0 0 0
 spares
 $draid1-0-s0 INUSE currently in use
 $draid1-0-s1 INUSE currently in use

Again, full redundancy has been restored without adding any new drive. If another drive fails,
the pool will still be able to handle IO, but there'd be no more distributed spare to rebuild
(both are in INUSE state now). At this point, there's no urgency to add a new replacement drive
because the pool can survive yet another drive failure.

2.2.2.1 Dynamic Rebuild Throttling

The rebuild process may delay zio according to the ZFS options spa_vdev_scan_delay and
spa_vdev_scan_idle, which works in a similar way as options used by resilver
zfs_scan_idle and zfs_resilver_delay. Moreover, when a dRAID VDEV has lost all
redundancy, e.g. a draid2 with 2 faulted child drives, the rebuild process will go full speed by
ignoring spa_vdev_scan_delay and spa_vdev_scan_idle altogether because the VDEV
is now in critical state.

After delaying, the rebuild zio is issued using priority ZIO_PRIORITY_SCRUB for reads and
ZIO_PRIORITY_ASYNC_WRITE for writes. Therefore the options that control the queuing of
these two IO priorities will affect rebuild zio as well, for example
zfs_vdev_scrub_min_active, zfs_vdev_scrub_max_active,
zfs_vdev_async_write_min_active, and zfs_vdev_async_write_max_active.

2.2.3 dRAID-aware Spare Space Rebalancing

Distributed spare space can be made available again by simply replacing any failed drive with
a new drive. This process is called rebalance which is essentially a resilver:
zpool replace -f tank sdo sdw
zpool status
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Online the device using 'zpool online' or replace the device with
 'zpool replace'.
 scan: resilvered 2.21G in 0h0m58s with 0 errors on Fri Feb 24 23:31:45 2017
config:

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 19 of 96

 NAME STATE READ WRITE CKSUM
 tank DEGRADED 0 0 0
 draid1-0 DEGRADED 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdu ONLINE 0 0 0
 spare-6 DEGRADED 0 0 0
 sdj OFFLINE 0 0 0
 $draid1-0-s1 ONLINE 0 0 0
 sdv ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0
 sdn ONLINE 0 0 0
 sdw ONLINE 0 0 0
 sdp ONLINE 0 0 0
 sdq ONLINE 0 0 0
 sdr ONLINE 0 0 0
 sds ONLINE 0 0 0
 sdt ONLINE 0 0 0
 spares
 $draid1-0-s0 AVAIL
 $draid1-0-s1 INUSE currently in use

Note that the scan status now shows "resilvered". In addition, the state of $draid1-0-s0 has
become AVAIL again. Since the resilver process checks block checksums, it makes up for the
lack of checksum verification during previous rebuild.

The dRAID1 VDEV in this example shuffles three (4 data + 1 parity) redundancy groups to the
17 drives. For any single drive failure, only about 1/3 of the blocks are affected (and should be
resilvered/rebuilt). The rebuild process is able to avoid unnecessary work, but the resilver
process by default will not. The rebalance (which is essentially resilver) can speed up a lot by
setting module option zfs_no_resilver_skip to 0. This feature is turned off by default because of
issue https://github.com/zfsonlinux/zfs/issues/5806.

2.2.4 Troubleshooting

Please report bugs to the dRAID project, as long as the code is not merged upstream. The
following information would be useful:
• dRAID configuration, i.e. the *.nvl file created by draidcfg command.
• Output of zpool events -v

https://github.com/zfsonlinux/zfs/issues/5806
https://github.com/thegreatgazoo/zfs/issues

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 20 of 96

• dRAID debug traces, which by default goes to dmesg via printk(). The dRAID debugging
traces can also use trace_printk(), which is more preferable but unfortunately GPL only. It
can be enabled by editing the META file to change the license (strictly for debugging only

2.3 Administration of dRAID for ZFS

2.3.1 Introduction

This chapter describes the administration of the dRAID for ZFS implementation

2.3.2 Command Line Interface

The ZFS block allocation code has been refactored to accommodate support for multiple
metadata classes backed by one or more virtual devices. Fine grain accounting, by class
distinction, was added to each runtime metaslab instance and is persistently stored in the on-
disk space map object. The ZFS ztest tool was modified to exercise new metadata allocation
code paths (section 5).

The CLI implementation for administering metadata classes is a set of extensions to the
existing zpool(1) and zdb(1) commands. The augmented CLI allows metadata classes to be
specified on pool create and later when adding additional VDEVs to a pool. In the CLI
commands that display VDEV configurations, we added a class info summary to differentiate a
VDEV's classes.

It is worth noting that in the ZFS CLI there are several methods of exposing the pool
configuration, and metadata isolation had to be adapted for each method (Figure 2-1).
Testing uncovered that some of the testing tools assumed a predetermined format for list log
specific devices and we had to revert our generalizations for the specific case of logs (class =
'log').

zpool status <pool>
zpool list –v <pool>
zpool iostat –v <pool>
zpool import
zpool create –n <pool> <vdev>...
zpool add –n <pool> <vdev>
zdb -C <pool>
zdb -s <pool>

Figure 2-1. ZFS Commands Modified for Metadata Isolation

2.4 Tuning dRAID for ZFS

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 21 of 96

3 ZED Fault Handling
The Fault Management Architecture (FMA) has been migrated from OpenZFS to the Linux ZFS
Event Daemon (ZED). Before this integration, ZED received events from the ZFS kernel
module and called scripts, called zedlets, to respond to specific events. The addition of FMA
allowed ZED to refine event processing so zedlets would only be called for specific faults
(Figure 3-1). FMA provides critical fault logic to ZED and enables automatic rebuild and
rebalance for dRAID and RAIDZ VDEVs.

Figure 3-1. ZED Architecture

3.1 Introduction
The Fault Management Architecture (Figure 3-2) consists of four components-- the Diagnosis
Engine, the Retire Agent, the SLM (syseventd loadable module) and the Disk Event Monitor --
that evaluate and act upon storage events and faults. The Diagnosis Engine receives events
from ZFS and evaluates faults for the VDEVs in the system. The Retire Agent responds to
diagnosed faults and, if necessary, initiates automatic rebuilds. The Agent will notify the ZFS
kernel of the change in the VDEV state (degraded or faulted). When the Disk Monitor
encounters a drive replacement, the event will be received by the Retire Agent, which will
initiate rebalancing data from the surviving drives to replace the new drive for the failed one.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 22 of 96

Figure 3-2. ZED FMA Components

3.2 Spare Device Matching
With the addition of Allocation Classes and dRAID, the nature of spare devices has changed.
Before these two features were added, all spares were essentially equal and any spare could
be used to effectively replace any drive in the pool. With the introduction of dRAID, however,
spare drives are no longer physical devices. With the introduction of the special allocation
classes, additional characteristics, such as size and type of drive, are important in selecting a
spare.

A spare drive in a dRAID is a virtual spare composed of blocks randomly scattered across all of
the physical devices in the pool. The nature of a dRAID spare means that a zpool with multiple
dRAID VDEVs can only replace a failed drive with a spare that shares the same dRAID parent
VDEV. A normal physical drive can also be used as a spare for a dRAID VDEV, but doing so will
trigger a resilver of the pool. Since resilvering is a significantly slower operation than a dRAID
sequential rebuild, using a normal drive defeats the purpose of using dRAID and should only
be done if a dRAID distributed spare is unavailable. To address these concerns the Retire
Agent in ZED will only attempt to spare-in a drive to a dRAID VDEV if the spare VDEV is a
distributed spare ($draid) that has the same parent identifier as the dRAID VDEV it is being
spared into.

Metadata Isolation (Section 4) uses a special allocation class to save ZFS metadata and small
block data to metaslabs segregated from the RAID VDEV or to physical disks in a dedicated
VDEV. When a dedicated tier is used, a different type of physical disk may be used to back
this tier. For example, for a metadata heavy workload, a dedicated pair of SSDs may be used
and a spare for this tier also be an SSD of similar size. The not just match the type, but the
size of dedicated device being replaced. To accommodate these concerns, ZED will check if

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 23 of 96

the drive being replaced has an allocation bias and then take into account these
characteristics in selecting an appropriate spare.

Since a segregated VDEV is allocated from the parent RAIDz or dRAID VDEV, sparing is done in
the context of the parent. In other words, sparing the parent will also spare the segregated
VDEV.

3.3 Multi-path Support
Lustre servers are deployed in high-availability (HA) pairs in which paired servers have access
to each other’s storage pools. On failure, the surviving server depends on Linux multi-pathing
to mount the other server’s storage. As a result, the FMA Diagnosis Engine and Retire Agent
must be able to support the Linux architecture. ZFS multi-path support had been started by
the ZFS community. We are currently collaborating with the community to ensure their code
works with our feature (see this commit for details).

3.4 ZED Watchdog Timer
To prevent a hung zedlet from hanging ZED all together, a watchdog timer (10s) is included to
keep zedlets from hanging.

3.5 Multi-Fault Support
A RAIDZ VDEV can handle multiple drive failures in parallel. The structure of the block pointer
tree traversal effectively enables queueing of subsequent failures. Reconstruction of a second
drive can proceed after the repair of the first driver completes ahead of it in the tree. Because
scanning metaslabs during the dRAID sequential rebuild is a serial process, dRAID cannot
repair a second driver until the first failure is completely rebuilt. As a result, while rebuilding
one failed drive, dRAID does not have the ability to queue subsequent failures.

Due to the way ZED interacts with the ZFS kernel module when it attempts to attach a spare
drive to a pool, if a rebuild or resilver is in progress it will be told that the pool is busy and the
attach cannot happen. Without multi-fault support, ZED would mark the spare attempt as
resolved and move on to processing other events, thus losing the event and need to rebuild
the dRAID. The current Retire Agent in ZED was modified to save off the spare request to be
replayed later.

The Retire Agent also receives resilver_finished and rebuild_finished events.
When either of these events arrives, the Retire Agent will check for a saved spare request and,
if it finds one, will replay the request to begin rebuilding the failed drive. This is implemented
so that any number of drives can be faulted and spared-in as long as there are spares
available.

https://github.com/zfsonlinux/zfs/commit/6078881aa18a45ea065a887e2a8606279cdc0329

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 24 of 96

4 Metadata Isolation

4.1 Introduction
Metadata Isolation improves large block streaming performance by ensuring that large
allocations for application data are not impeded by smaller allocations for ZFS metadata and
the subsequent data fragmentation that results when smaller and larger blocks compete for
space in ZFS allocation areas (metaslabs).

ZFS already includes the concept of separate storage classes associated with a ZFS pool to
create write and read caches (SLOG and L2ARC, respectively) to improve storage performance.
The Metadata Isolation feature adds a new allocation class (“special”) to hold specific ZFS
metadata types and small block application data separate from large block application data.

Allocation classes can be thought of as allocation tiers that are dedicated to specific block
categories: the special class, which captures ZFS metadata and small block application data,
will occupy a mirrored VDEV and the normal class, which captures all application data, will
consume the dRAID or RAIDZ VDEV. Metadata Isolation is an independent feature from the
underlying RAID mechanism used for the normal class data.

Exercising the feature requires that each pool be comprised of at least one (special) class. As
with the cache or log classes, a special allocation class VDEV can be added at the time the
storage pool is created or it can be added at a later time. If the special allocation VDEV is
written after the pool is created, only newly written metadata will reside in the newly added
VDEV. In general, the capacity of an allocation class VDEV can be expanded by adding
additional VDEVs to that class or by replacing existing VDEV devices with a larger device (via
ZFS auto-expand).

Each class type represents exclusive allocations but metadata types can be combined onto
the associated VDEV. The normal class will accept all block types not being steered into the
special class already and serves as the fallback allocator for all classes.

Isolating ZFS metadata and small block I/O to a separate mirrored VDEV decreases
fragmentation within the normal class so that allocations of large, contiguous data blocks is
less constrained and data can be streamed more efficiently to and from each disk.

The cost of using a dedicated VDEV to isolate the metadata , however, is if the disks in the
VDEV are in the same enclosure as the disks used for dRAID, those mirrored disks are
unavailable to participate in the dRAID rebuild following a drive failure.

The Metadata Isolation solution created is a hybrid mirror VDEV that combines the mirrored
ZFS metadata in separate regions of the dRAID VDEV. Metadata Isolation can be combined on
the same disks with dRAID by defining class allocation functionality at the metaslab level and
mixing metaslabs in the same VDEV. The Hybrid solution makes all drives available for data
and ensures their full participation in the dRAID rebuild following a drive failure.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 25 of 96

Metadata Isolation enables different allocation policies for each ZFS data class. Application
data can use RAIDZ VDEVs while ZFS metadata and small file system data can use mirrored
VDEVs. There are two Opt-in variations for allocation classes: Dedicated and Segregated.

Figure 4-1. Transition from Unmodified RAIDZ to Hybrid Mirror Configuration

(a) Unmodified RAIDZ (b) Metadata Isolation - Dedicated

(c) Metadata Isolation – Segregated (Hybrid Mirror dRAID only)

The diagram above (Figure 4-1) illustrates the transition from unmodified RAIDZ
configurations to the Hybrid Mirror configuration:

a. Unmodified RAIDz:
The application data and ZFS metadata are co-allocated within ZFS metaslabs of
RAIDZ VDEVs.

b. Metadata Isolation – Dedicated
The mirrored VDEV for the ZFS metadata and small block I/O (i.e., the “special”
allocation class) is created from a separate set of physical VDEVs dedicated for the
special class.

c. Metadata Isolation -- Segregated
The mirrored VDEV is created from a set of metaslabs allocated from a dRAID VDEV.
In this way, the metaslabs for the special class are segregated from the metaslabs
used for the normal class.

These variations are mutually exclusive use cases. A VDEV may only use one type.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 26 of 96

4.2 Dedicated VDEVs
All metaslabs in the VDEV are dedicated to a specific allocation class category. A pool must
always have at least one general (non-specified) VDEV when using dedicated VDEVs. This
configuration is selected as an “Opt-in” using a VDEV class designation keyword when creating
the VDEV. Valid designation keywords are :
special | log

The dedicated class can currently only be specified with mirrored VDEVs.

Example Syntax:
zpool create demo raidz <disks> special mirror <disks>
zpool add demo special mirror <disks>

The first command creates the demo pool with ‘special’ class on the specified mirror disks.
The second command adds additional disks to the special mirror created by the 1st
command. Adding disks is only possible with dedicated VDEVs.

4.3 Segregated VDEVs
In the segregated use case, a portion of a VDEV's metaslabs are set aside for a specific
allocation class when the pool is created. Opt-in for this feature is global to the pool using a
boolean pool property. The following properties have been defined:
segregate_log=on
segregate_special=on

These “segregate” properties can be combined if multiple segregation categories are desired
(e.g., segregate log class and segregate special class from normal class).

Example Syntax:
zpool create -o segregate_special=on demo raidz <disks>

This command creates a RAIDz pool named demo with segregation enabled for the special
allocation class.

4.3.1 Segregation Percentage

Segregated VDEVs can only be created during zpool creation. It is not possible to add
additional segregated VDEVs to an allocation class at a later time, as is possible with dedicated
VDEVs.

By default, the following segregation limits are applied:
• segregate_log -- sets aside one metaslab per VDEV for the log class.
• segregate_special -- sets aside 20% of a VDEV's metaslabs for the special class.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 27 of 96

The segregated metaslabs are dynamically assigned using a first available algorithm when the
VDEV is opened. Subsequent opens may shift which metaslabs are assigned, but once a
metaslab is allocated from (i.e. it is activated), the preferred bias becomes persistent.

The percentage allocated to the special class can be tuned to a maximum of 50 percent.
Although the number of metaslabs representing the selected percentages is set at pool
creation, the assignment of an individual metaslab to the class is deferred until the allocation
is needed. Nonetheless, because the ditto block policy (Section 4.3.2) requires writing ditto
copies to three different metaslabs, the minimum number of metaslabs initially assigned to
the “special” allocation class on a segregated metadata VDEV is three.

ZFS metadata has priority for the special allocations. Since the special class includes
allocations for both ZFS metadata and small block data, 5% of a segregated VDEV’s metaslabs
are reserved for ZFS metadata. This policy will prevent small block usage of the special
allocation from competing with ZFS metadata usage of the storage. Small block data can take
advantage of the segregated VDEV as long as space is available, otherwise small block data
can easily overflow to the normal class.

Block category allocation accounting can be observed from the CLI (see zdb -mm and zpool
list -C).

4.3.2 Ditto Block Policy

Each ZFS block pointer structure has space for the three data virtual address (DVA) pointers.
ZFS replicates its metadata and uses the DVAs to record the locations of these “ditto blocks.”
When there is more than one VDEV, the ditto blocks are written to different VDEVs in the pool.
When there is only one VDEV available and more than one DVA is required (ditto copies > 1),
the traditional ditto placement policy was to place the allocation a distance of 1/8th of total
VDEV allocation space away from the other DVAs. This policy put a burden on the allocator to
find a metaslab 1/8th above or below the current allocation.

A new, simplified ditto placement policy has been created to guarantee that the other DVAs
simply land in a different metaslab. This policy in turn greatly simplifies ditto DVA placement
from a segregated VDEV, where a group of metaslabs is not necessarily consecutive.

To validate that the new policy is honored, a zdb(8) block audit will report any DVAs that
landed in the same metaslab. The expected result is that there will be none:
#zdb -b ssu_1ost1
Traversing all blocks to verify nothing leaked ...

loading space map for vdev 0 of 1, metaslab 290 of 291 ...
26.4T completed (357720MB/s) estimated time remaining: 0hr 00min 00sec
 No leaks (block sum matches space maps exactly)

If there is a policy failure, it will be manifest as a non-zero block audit, as shown in the
following zdb audit output in which the ditto block allocation was manipulated to force the
error:
 Dittoed blocks in same metaslab: 21

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 28 of 96

4.4 VDEV Changes

4.4.1 Feature Flag Encapsulation

The feature@allocation_classes becomes active when a unique allocation class is
instantiated by a VDEV. Activating this feature makes the pool read-only on ZFS builds that do
not support allocation classes.

4.4.2 VDEV Allocation Bias

The ZFS concept of VDEV allocation bias is extended beyond the normal or log classes to
include special and segregated classes. Instead of defining a number of Boolean flags, the
allocation classes are now expressed in a runtime VDEV instance as an allocation bias:
typedef enum vdev_alloc_bias {
 VDEV_BIAS_NONE,
 VDEV_BIAS_LOG, /* dedicated to ZIL data (SLOG) */
 VDEV_BIAS_DEDUP, /* dedicated to DDT data */
 VDEV_BIAS_METADATA, /* dedicated to metadata (DMU and MOS) */
 VDEV_BIAS_SPECIAL, /* dedicated to small blocks */
 VDEV_BIAS_SEGREGATE, /* segregated metaslabs into multiple groups */
} vdev_alloc_bias_t;

This VDEV allocation class bias information is stored in the per-vdev zap object as a string
value:
/* vdev metaslab allocation bias */
#define VDEV_ALLOC_BIAS_LOG "log"
#define VDEV_ALLOC_BIAS_SPECIAL "special"
#define VDEV_ALLOC_BIAS_SEGREGATE "segregate"

The bias is also passed internally in the pool config during a zpool create and any internal
zpool config query. This information can be used by functions in the zpool(8) command.

4.4.3 Metaslab Allocation Bias

Class allocation bias occurs at a metaslab granularity. Each metaslab has an allocation bias
which is assigned when the metaslab is initialized, based on the VDEV's allocation bias. The
metaslab's allocation bias then determines which metaslab group to join.

There is additional VDEV metadata stored in the VDEV_TOP_ZAP_METASLAB_INFO_OBJ
object. This object is an array of ms_alloc_phys structures, one per metaslab, which tracks the
allocation bias assigned to a metaslab and the allocation stats by category:

/*
 * Additional per-metaslab allocation info for dedicated/segregated vdevs

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 29 of 96

 */
typedef struct ms_alloc_phys {
 uint64_t ms_alloc_flags; /* flags: ie segregated bias */
 uint64_t ms_alloc_metadata; /* metadata space allocated */
 uint64_t ms_alloc_smallblks; /* smallblks space allocated */
 uint64_t ms_alloc_dedup; /* dedup space allocated */
} ms_alloc_phys_t;

Metaslabs in dedicated VDEVs inherit the bias of the VDEV. However, in segregated VDEVs,
the class allocation bias of a metaslab is assigned when the metaslab is initialized. The
metaslab's allocation bias then determines which metaslab group to join.
/*
 * class allocation bias (segregated vdevs only)
 */
typedef enum {
 MS_ALLOC_BIAS_UNASSIGNED = 0x00,
 MS_ALLOC_BIAS_LOG = 0x01,
 MS_ALLOC_BIAS_SPECIAL = 0x02,
 MS_ALLOC_BIAS_NORMAL = 0x03
} ms_alloc_bias_t;

4.4.4 VDEV Allocation Stats

Status of zpool VDEVs is available through the zpool list -v command, where the mirrored
dedicated VDEVs are shown as distinct members of the pool. In the example below, two drives
are mirrored to create a dedicated VDEV for the special allocation class. The pool also
includes two dRAID virtual spare drives.
$ zpool list -v ost-d
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP
ost-d 16.6T 12.9G 16.6T - 0% 0%
 draid2 16.2T 11.2G 16.2T - 0% 0.06%
 wwn-0x5000c5007adc15a5 - - - - - -
 wwn-0x5000c5007adc6d2f - - - - - -
 wwn-0x5000c5007adcf3f4 - - - - - -
 wwn-0x5000c5007add017e - - - - - -
 wwn-0x5000c5007addaf56 - - - - - -
 wwn-0x5000c5007adc6d4a - - - - - -
 wwn-0x5000c5007b066251 - - - - - -
 wwn-0x5000c5007b067415 - - - - - -
 wwn-0x5000c5007b065a87 - - - - - -
 wwn-0x5000c5007add62b4 - - - - - -
 wwn-0x5000c5007addb524 - - - - - -
 wwn-0x5000c5007add4c29 - - - - - -
 wwn-0x5000c5007add5274 - - - - - -

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 30 of 96

 wwn-0x5000c5007add5c4b - - - - - -
 wwn-0x5000c5007adc7092 - - - - - -
 wwn-0x5000c5007add591d - - - - - -
 wwn-0x5000c5007b34afa6 - - - - - -
 wwn-0x5000c5007add870f - - - - - -
 wwn-0x5000c5007b06e13e - - - - - -
 wwn-0x5000c5007b067081 - - - - - -
 special:mirror 372G 1.62G 370G - 0% 0.43%
 wwn-0x55cd2e404c033d2e - - - - - -
 wwn-0x55cd2e404c033fac - - - - - -
spare - - - - - -
 $draid2-0-s0 - - - - - -
 $draid2-0-s1 - - - - - -

Segregated VDEVs, however, are essentially a subset of the main RAID VDEV and, as a result,
status of a segregated VDEV is not available through the “zpool list -v” command. The
special class allocation information is added to the vdev_stat_t structure to track the
number of metaslabs assigned to the special class and the space used by the normal and
special metaslabs that have been assigned.
typedef struct vdev_stat {
...
 uint64_t vs_normal_assigned; /* ms assigned space */
 uint64_t vs_special_assigned; /* ms assigned space */
 uint64_t vs_special_alloc; /* special allocated */
} vdev_stat_t;

This information is primarily used by the ‘zpool list –C’ command to query the allocation
info by class category and helps determine if provisioning was done correctly.
zpool list -C ssu_1ost1
NAME SIZE ALLOC FREE CAPACITY
-------------- ----- ----- ----- --------
ssu_1ost1 72.7T 56.0T 16.8T 77.0%
 draid2-0 72.7T 56.0T 16.8T 77.0%
 normal 58.2T 55.8T 2.48T 95.8%
 special 2.25T 217G 2.04T 9.43%
 unassigned 12.2T 0 12.2T -

This example shows that 2.25TB have been assigned to the special class, but only 217GB have
been used. The normal class has allocated 55.8TB of the 58.2TB available from the metaslabs
assigned to this class. The pool still has over 20% of its metaslabs (12.2TB) unassigned.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 31 of 96

4.5 Notes on Metadata Isolation
• Allocation classes are currently incompatible with PR#5258 (Open ZFS 7090 -- zfs should

improve allocation order and throttle allocations). The module parameter
zio_dva_throttle_enabled is set to B_FALSE in this patch and must remain disabled.

• Enabling the segregated VDEV feature is limited to pool create. The ability to enable it on
an existing pool is a stated design goal but requires further testing. It is prevented (by
means of a set-once property) as a conservative measure in current builds.

• The effect of causing parity hot spotting by the segregating of metadata away from file
data is not known.

• The threshold zfs_class_smallblk_limit is a runtime global and should reside in the
pool since the metaslab level accounting depends on it not changing.

• At this point there are no custom allocation policies and all classes use the default
allocator.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 32 of 96

5 Validation

5.1 Building and installing the ZFS Test Suite
The ZFS Test Suite runs under the test-runner framework. This framework is built alongside
the standard ZFS utilities and is included as part of zfs-test package. The zfs-test package can
be built from source as follows:

$./configure
$ make pkg-utils

The resulting packages can be installed using the rpm or dpkg command as appropriate for
your distributions. Alternately, if you have installed ZFS from a distributions repository (not
from source) the zfs-test package may be provided for your distribution.

- Installed from source
$ rpm -ivh ./zfs-test*.rpm, or
$ dpkg -i ./zfs-test*.deb,

- Installed from package repository
$ yum install zfs-test
$ apt-get install zfs-test

5.2 Running the ZFS Test Suite
The pre-requisites for running the ZFS Test Suite are:
• Three scratch disks

o Specify the disks you wish to use in the $DISKS variable, as a space delimited list like this:
DISKS='vdb vdc vdd'. By default the zfs-tests.sh sciprt will construct three loopback devices to
be used for testing: DISKS='loop0 loop1 loop2'.

• A non-root user with a full set of basic privileges and the ability to sudo(8) to root without
a password to run the test.

• Specify any pools you wish to preserve as a space delimited list in the $KEEP variable. All
pools detected at the start of testing are added automatically.

• The ZFS Test Suite will add users and groups to test machine to verify functionality.
Therefore it is strongly advised that a dedicated test machine, which can be a VM, be used
for testing.

Once the pre-requisites are satisfied simply run the zfs-tests.sh script:
$ /usr/share/zfs/zfs-tests.sh

Alternately, the zfs-tests.sh script can be run from the source tree to allow developers to
rapidly validate their work. In this mode the ZFS utilities and modules from the source tree will

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 33 of 96

be used (rather than those installed on the system). In order to avoid certain types of failures
you will need to ensure the ZFS udev rules are installed. This can be done manually or by
ensuring some version of ZFS is installed on the system.

$./scripts/zfs-tests.sh

The following zfs-tests.sh options are supported:
Test Description

-v Verbose zfs-tests.sh output When specified additional information describing the test
environment will be logged prior to invoking test-runner. This includes the runfile being used,
the DISKS targeted, pools to keep, etc.

-q Quiet test-runner output. When specified it is passed to test-runner(1) which causes output to
be written to the console only for tests that do not pass and the results summary.

-x Remove all testpools, dm, lo, and files (unsafe). When specified the script will attempt to
remove any leftover configuration from a previous test run. This includes destroying any pools
named testpool, unused DM devices, and loopback devices backed by file-VDEVs. This
operation can be DANGEROUS because it is possible that the script will mistakenly remove a
resource not related to the testing.

-k Disable cleanup after test failure. When specified the zfs-tests.sh script will not perform any
additional cleanup when test-runner exists. This is useful when the results of a specific test
need to be preserved for further analysis.

-f Use sparse files directly instread of loopback devices for the testing. When running in this mode
certain tests will be skipped which depend on real block devices.

-d DIR Create sparse files for VDEVs in the DIR directory. By default these files are created under
/var/tmp/.

-s SIZE Use VDEVs of SIZE (default: 2G)

-r RUNFILE Run tests in RUNFILE (default: linux.run)

The ZFS Test Suite allows the user to specify a subset of the tests via a runfile. The format of
the runfile is explained in test-runner(1), and the files that zfs-tests.sh uses are available for
reference under /usr/share/zfs/runfiles. To specify a custom runfile, use the -r option:

$ /usr/share/zfs/zfs-tests.sh -r my_tests.run

5.3 Test Results
While the ZFS Test Suite is running, one informational line is printed at the end of each test,
and a results summary is printed at the end of the run. The results summary includes the
location of the complete logs, which is logged in the form /var/tmp/test_results/[ISO 8601
date]. A normal test run launched with the zfs-tests.sh wrapper script will look something like
this:
$ /usr/share/zfs/zfs-tests.sh -v -d /mnt

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 34 of 96

--- Configuration --- Runfile: /usr/share/zfs/runfiles/linux.run STF_TOOLS:
/usr/share/zfs/test-runner STF_SUITE: /usr/share/zfs/zfs-tests FILEDIR: /mnt
FILES: /mnt/file-vdev0 /mnt/file-vdev1 /mnt/file-vdev2 LOOPBACKS: /dev/loop0
/dev/loop1 /dev/loop2 DISKS: loop0 loop1 loop2 NUM_DISKS: 3 FILESIZE: 2G Keep
pool(s): rpool

/usr/share/zfs/test-runner/bin/test-runner.py -c
/usr/share/zfs/runfiles/linux.run -i /usr/share/zfs/zfs-tests Test:
.../tests/functional/acl/posix/setup (run as root) [00:00] [PASS] ...470
additional tests... Test: .../tests/functional/zvol/zvol_cli/cleanup (run as
root) [00:00] [PASS]

Results Summary PASS 472

Running Time: 00:45:09 Percent passed: 100.0% Log directory:
 /var/tmp/test_results/20160316T181651

5.4 ZTest/zloop Verification Tests
Ztest and zloop have been modified to test new functionality related to ABD, Allocation
Classes and dRAID. When creating configurations, zloop and ztest will randomly opt for
creating dRAID pools and opt to turn allocation classes on for those pools. In addition
randomly through the tests it will flip linear vs scatter gather allocation on and off for ABD.
The Allocation classes and dRAID functionality can be specified through a new set of
command line options to both Ztest and Zloop.

Table 5-1. zTest dRAID Options

Parameter Default Description

-K<kind> random raidz| draid| random

-D <number> 4 Data drives per redundancy group

-G <number> 2 Number of redundancy groups

-S <number> 1 Distributedspare drives

-R<number> 1 RAID group parity

-s <number> 128M Size of each leaf disk

Example:
ztest-VVV -K draid-D 4 -G 3 -S 1 -R 1 -s 256m

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 35 of 96

Appendix A. Usage Examples

A.1 Usage Examples of dRAID for ZFS

A.1.1 Arbitrary Pool Configuration

dRAID supports all RAIDz parity levels. The new “draidcfg” tool is currently required to find
the best set of random base permutations for the specified array configuration.

The dRAID pool configuration starts with a new command, “draidcfg,” to find the best set of
random permutations for the specified input parameters. The output from the draidcfg tool is
a configuration file that ‘zpool create’ uses when creating the dRAID. The list of base
permutations in the configuration file will be stored in the ZFS disk labels during zpool
creation.

In this example, a triple-parity dRAID is created from 80 drives with seven 8+3 redundancy
groups and three distributed spares.
draidcfg -n 80 -d 8 -p 3 -s 3 80.nvl
 Worst (7 x 11 + 3) x 5120: 0.998
Seed chosen: b79e65a91d440fc

The output from the draidcfg tool indicates the resulting configuration and the random seed
that gave the best distribution of the parity groups and distributed spares. The output file
holds the list of base permutations.

The following shows the first three base permutations contained in the 80.nvl file created
above. The complete file listing is available in Appendix B.3.
draidcfg -r 80.nvl
dRAID3 vdev of 80 child drives: 7 x (8 data + 3 parity) and 3 distributed
spare
Using 64 base permutations
 23,54,38,76,61,14,34,48, 9,31,52,10, 3,41,46,70, 1,
6,59,47,28,32,29,49,30,22,27,11,44,20,56, 5,74,
8,50,15,62,66,33,67,16,65,36,71,75,18,68,21,69,26,64,60,55,42,43,63,35,37,24,
7,17,45, 0, 2,58,78,57,13,12,72,73, 4,19,25,51,79,39,53,77,40,
 41,54,75,48, 2,57,36, 8,76,44, 5, 3,22,30,61,69,47,28,13, 0,
6,71,34,55,33,46,70,79,66,45,27,74,18,25,60,72,11,50,68, 1,53,32,19,64,40,51,
4,31,17,62,42,39,26,56, 7,16,24,12,38,15,78,35,37,67,
9,23,20,49,10,43,14,59,77,29,63,73,58,52,21,65,
 14,65,43, 9,16,53,46,69,17,40,20, 3,47,70,28,39,54, 5,12,24,78,
2,49,61,11,51,75,79,41,50,73,34,18,21,25,52,44,22,32,77, 8,59,15, 7,74,66,
0,71,45,56, 4,36,58,23,68, 6,67,42,29,64,26,33,72,10,37,13,
1,76,60,38,48,31,63,27,35,62,55,19,30,57,
. . . .

The command line syntax for creating the dRAID pool is similar to that for creating a RAIDz
pool, with the addition of the draidcfg filename before listing the drives to be used in the pool.
zpool create -f -o ashift=12 -o cachefile=none -o segregate_special=on -O
recordsize=16MB MS09 draid3 cfg=/root/80.nvl sdb sdd sde sdg sdh sdi sdk sdl

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 36 of 96

sdm sdo sdp sdq sds sdt sdu sdw sdx sdy sdz sdab sdac sdad sdae sdc sdf sdj
sdn sdr sdv sdaa sdaf sdag sdah sdai sdaj sdak sdal sdam sdan sdao sdap sdaq
sdar sdas sdat sdau sdav sdaw sdax sday sdaz sdba sdbb sdbc sdbd sdbe sdbf
sdbg sdbh sdbi sdbj sdbk sdbl sdbm sdbn sdbo sdbp sdbq sdbr sdbs sdbt sdbu
sdbv sdbw sdbx sdby sdbz sdca sdcb sdcd

Zpool status for this pool lists all 80 drives contained in the dRAID and the three distributed
spare VDEVs. The beginning and end of the listing are shown in the following table. The
complete listing is available in Appendix B.4.
zpool status
pool: MS09
 state: ONLINE
 scan: none requested
config:
NAME STATE READ WRITE CKSUM
 MS09 ONLINE 0 0 0
 draid3-0 ONLINE 0 0 0
 sdb ONLINE 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0

 sdca ONLINE 0 0 0
 sdcb ONLINE 0 0 0
 sdcd ONLINE 0 0 0
 spares
 $draid3-0-s0 AVAIL
 $draid3-0-s1 AVAIL
 $draid3-0-s2 AVAIL
errors: No known data errors

A.1.2 Dynamic Rebuild Throttling

The rebuild process observes and responds to changes in application I/O and pool
redundancy level, then throttles itself accordingly. This example shows that the rebuild
process :

o slowed down to give more I/O resources to the application
o sped up when the pool lost all redundancy critical mode (2 drives failed on dRAID2) and

reached a critical state.

For this test we used a 43 drive Lustre OST. The results of the test are displayed with
netdump (Figure 5-1). The upper graph shows read throughput in MB/s of all 43 individual
drives. The lower graph shows the write throughput. The Y axis is throughput in MB/s, and the
X axis is wallclock time, moving from right to left (older times are on the left).

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 37 of 96

Figure 5-1. Dynamic Rebuild Throttling

First Drive Failed
(Rebuild Starts) Application

IO Starts
(Rebuild
Stops)

Second Drive Failed
(First Drive Rebuild Resumes)

Dynamic
Throttling

Occurs

First Drive Rebuild
Completes

To initiate the test, one drive is taken offline and then started the rebuild by manually
replacing the offline drive with a distributed spare.
zpool offline ssu_1ost0 sde
zpool replace ssu_1ost0 sde '$draid2-0-s0'

With no application I/O, the rebuild proceeded at full speed. The md5sum application was
then run to generate I/O by reading a list of files from the file system.
md5sum /ssu_1ost0/*.iso

As seen on the netdump plot, the rebuild process throttled itself as soon as the application i/O
started. Both reads and writes dropped as the drives were busy switching between the two
i/O streams from the application and the rebuild. Since this application is not I/O intensive
and only did read I/Os, the write I/Os indicate the rebuild is proceeding slowly in the
background. The application IO kept the file system busy enough to demonstrate the rebuild
throttling mechanism

When another drive is taken offline before the first rebuild completes, the pool reaches a
critical state since redundancy of the dRAID2 array has been lost and the rebuild throughput
resumes to full speed immediately.
zpool offline ssu_1ost0 sdk

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 38 of 96

When the rebuild completes, the zpool status shows that drive sde has been replaced by
$draid2-0-s0, which is now INUSE.
zpool status
NAME STATE READ WRITE CKSUM
ssu_1ost0 DEGRADED 0 0 0
 draid2-0 DEGRADED 0 0 0
 sdb ONLINE 0 0 0
 sdd ONLINE 0 0 0
 spare-2 DEGRADED 0 0 0
 sde OFFLINE 0 0 0
 $draid2-0-s0 ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdi ONLINE 0 0 0
 sdk OFFLINE 0 0 0
......
spares
 $draid2-0-s0 INUSE currently in use
 $draid2-0-s1 AVAIL
$draid2-0-s2 AVAIL

A.1.3 Rebuild Stop and Resume

Rebuild progress is periodically persisted so that if the rebuild process t is interrupted, the
rebuild will be able to resume again from where progress was last saved, rather than restarting
from the beginning.

In the previous example, two drives were taken offline (sde and sdk) and rebuilt sde onto
$draid2-0-s0. For this example, the rebuild of sdk was begun onto $draid2-0-s1. The rebuild
was then interrupted by exporting the pool.
zpool replace ssu_1ost0 sdk '$draid2-0-s1'
zpool export ssu_1ost0

The Linux dmesg log is used to view the debug messages from the rebuild process showing
that rebuild was interrupted at metaslab 31.
[265158.886650] Scanning 4 segments for MS 30
[265158.892179] MS (30 at 8053063680K) segment: 720K + 80K
[265158.898894] MS (30 at 8053063680K) segment: 1920K + 80K
[265158.905767] MS (30 at 8053063680K) segment: 2080K + 80K
[265158.912586] MS (30 at 8053063680K) segment: 2880K + 80K
[265158.919333] Completed rebuilding metaslab 30
[265158.924989] All metaslabs [0, 29) fully rebuilt.
[265158.931215] Scanning 4 segments for MS 31
[265158.936432] MS (31 at 8321499160K) segment: 160K + 81920K

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 39 of 96

[265158.943346] MS (31 at 8321499160K) segment: 98280K + 101785600K
[265160.549318] Completed rebuilding metaslab 29
[265160.555119] All metaslabs [0, 31) fully rebuilt.
[265163.080670] Aborted rebuilding metaslab 31

Note that the rebuild progress shown in the debug message log represents the saved status
in-memory. The on-disk persisted progress usually lags behind the saved in-memory state by
a number of metaslabs. As a result, the rebuild is expected to resume metaslab 31 or earlier.

When the pool is imported, rebuild resumed from the progress persisted to disk. The
following debug messages show that the rebuild started from metaslab 29.
[265196.221793] Restarting rebuild at metaslab 29
[265197.190622] Scanning 36 segments for MS 29
[265197.195950] MS (29 at 7784628240K) segment: 0K + 229120K
[265197.208742] MS (29 at 7784628240K) segment: 229360K + 491480K
[265197.220629] MS (29 at 7784628240K) segment: 720880K + 264320K
[265197.227520] MS (29 at 7784628240K) segment: 985360K + 106320K
[265197.234404] MS (29 at 7784628240K) segment: 1091760K + 49960K
[265197.241346] MS (29 at 7784628240K) segment: 1141800K + 37960K
[265197.248362] MS (29 at 7784628240K) segment: 1179840K + 37200K

After the rebuild is completed, both distributed spares are now INUSE:
zpool status
NAME STATE READ WRITE CKSUM
ssu_1ost0 DEGRADED 0 0 0
 draid2-0 DEGRADED 0 0 0
 sdb ONLINE 0 0 0
 sdd ONLINE 0 0 0
 spare-2 DEGRADED 0 0 0
 sde OFFLINE 0 0 0
 $draid2-0-s0 ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdi ONLINE 0 0 0
 spare-6 DEGRADED 0 0 0
 sdk OFFLINE 0 0 0
 $draid2-0-s1 ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0
......
 spares
 $draid2-0-s0 INUSE currently in use
 $draid2-0-s1 INUSE currently in use
 $draid2-0-s2 AVAIL

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 40 of 96

A.1.4 Rebalance

In this example, the failed sde drive is replaced with the sdas drive to make the $draid2-0-s0
spare available again:
zpool replace -f ssu_1ost0 sde sdas

The rebalance process uses the traditional ZFS resilver mechanism. Although it is essentially
reconstructing the same lost redundancy as the previous rebuild, rebalance is much slower as
it has to traverse the block pointer tree and write to a single spare drive. As shown below
(Figure 5-2), only the replacement drive (sdas) does write IO, while during a sequential rebuild
all surviving drives share the write workload (Figure 5-1).

Figure 5-2. Rebalance to a Replacement Drive

After rebalance is completed, zpool status reports the corresponding distributed spare
($draid2-0-s0) as being available (AVAIL).
zpool status
NAME STATE READ WRITE CKSUM
ssu_1ost0 DEGRADED 0 0 0
 draid2-0 DEGRADED 0 0 0
 sdb ONLINE 0 0 0
 sdd ONLINE 0 0 0

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 41 of 96

 sdas ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdi ONLINE 0 0 0
 spare-6 DEGRADED 0 0 0
 sdk OFFLINE 0 0 0
 $draid2-0-s1 ONLINE 0 0 0
 sdl ONLINE 0 0 0

spares
 $draid2-0-s0 AVAIL
 $draid2-0-s1 INUSE currently in use
 $draid2-0-s2 AVAIL

A.2 Usage Examples of Metadata Isolation with Lustre* and dRAID
These examples demonstrate the aspects of different allocation class configurations using
zpool(8), zdb(8) and kstat.

A.2.1 Hybrid Metadata/Smallblock Isolation with dRAID VDEVs

This example compares two dRAID zpools:
• ssu_1ost1 had VDEV segregation enabled to create a hybrid-mirror dRAID. This dRAID

VDEV set aside a portion of its allocation areas (metaslabs) to host metadata and small
blocks. The remaining areas were used for generic application data and are intended to
stream larger 16MB block content.

• ssu_2ost0 had dRAID alone. In this configuration of dRAID, allocations were not
differentiated by category. Each metaslab hosted data as it arrived, which could be any
mixture of small or large data and ZFS metadata.

Both dRAID pools had 43 drives in four 8+2 parity groups and 3 spares. Note that the zpool
status for both pools shows the three virtual spares “$draid-xx”, but otherwise there is nothing
to indicate that ssu_1ost1 also had a hybrid mirror for the special allocation class.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 42 of 96

dRAID with VDEV segregation enabled:
zpool status
 pool: ssu_1ost1
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 ssu_1ost1 ONLINE 0 0 0
 draid2-0 ONLINE 0 0 0
 mpathfn ONLINE 0 0 0
 mpathfa ONLINE 0 0 0
 mpathcx ONLINE 0 0 0
 mpathbs ONLINE 0 0 0
 mpathan ONLINE 0 0 0
 mpathu ONLINE 0 0 0
 mpatheu ONLINE 0 0 0
 mpathdp ONLINE 0 0 0
 mpathck ONLINE 0 0 0
 mpathbf ONLINE 0 0 0
 mpathaa ONLINE 0 0 0
 mpathh ONLINE 0 0 0
 mpatheh ONLINE 0 0 0
 mpathdc ONLINE 0 0 0
 mpathfm ONLINE 0 0 0
 mpathaz ONLINE 0 0 0
 mpathcw ONLINE 0 0 0
 mpathbr ONLINE 0 0 0
 mpatham ONLINE 0 0 0
 mpatht ONLINE 0 0 0
 mpathdd ONLINE 0 0 0
 mpathdo ONLINE 0 0 0
 mpathcj ONLINE 0 0 0
 mpathbe ONLINE 0 0 0
 mpathg ONLINE 0 0 0
 mpathfl ONLINE 0 0 0
 mpatheg ONLINE 0 0 0
 mpathdb ONLINE 0 0 0
 mpathay ONLINE 0 0 0
 mpathcv ONLINE 0 0 0
 mpathbq ONLINE 0 0 0
 mpathal ONLINE 0 0 0
 mpaths ONLINE 0 0 0
 mpathfx ONLINE 0 0 0
 mpathes ONLINE 0 0 0
 mpathdn ONLINE 0 0 0
 mpathci ONLINE 0 0 0
 mpathbd ONLINE 0 0 0
 mpathf ONLINE 0 0 0
 mpathfk ONLINE 0 0 0
 mpathef ONLINE 0 0 0
 mpathda ONLINE 0 0 0
 mpathax ONLINE 0 0 0
 spares
 $draid2-0-s0 AVAIL

dRAID with no metadata isolation:
zpool status
 pool: ssu_2ost0
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 ssu_2ost0 ONLINE 0 0 0
 draid2-0 ONLINE 0 0 0
 mpathdd ONLINE 0 0 0
 mpathfa ONLINE 0 0 0
 mpathcx ONLINE 0 0 0
 mpathbs ONLINE 0 0 0
 mpathan ONLINE 0 0 0
 mpathu ONLINE 0 0 0
 mpatheu ONLINE 0 0 0
 mpathdp ONLINE 0 0 0
 mpathck ONLINE 0 0 0
 mpathbf ONLINE 0 0 0
 mpathaa ONLINE 0 0 0
 mpathh ONLINE 0 0 0
 mpathfm ONLINE 0 0 0
 mpatheh ONLINE 0 0 0
 mpathdc ONLINE 0 0 0
 mpathaz ONLINE 0 0 0
 mpathcw ONLINE 0 0 0
 mpathbr ONLINE 0 0 0
 mpatham ONLINE 0 0 0
 mpatht ONLINE 0 0 0
 mpathet ONLINE 0 0 0
 mpathdo ONLINE 0 0 0
 mpathcj ONLINE 0 0 0
 mpathbe ONLINE 0 0 0
 mpathg ONLINE 0 0 0
 mpathfl ONLINE 0 0 0
 mpatheg ONLINE 0 0 0
 mpathdb ONLINE 0 0 0
 mpathay ONLINE 0 0 0
 mpathcv ONLINE 0 0 0
 mpathbq ONLINE 0 0 0
 mpathal ONLINE 0 0 0
 mpaths ONLINE 0 0 0
 mpathfx ONLINE 0 0 0
 mpathes ONLINE 0 0 0
 mpathdn ONLINE 0 0 0
 mpathci ONLINE 0 0 0
 mpathbd ONLINE 0 0 0
 mpathfk ONLINE 0 0 0
 mpathef ONLINE 0 0 0
 mpathda ONLINE 0 0 0
 mpathax ONLINE 0 0 0
 mpathei ONLINE 0 0 0
 spares
 $draid2-0-s0 AVAIL

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 43 of 96

 $draid2-0-s1 AVAIL
 $draid2-0-s2 AVAIL

errors: No known data errors

 $draid2-0-s1 AVAIL
 $draid2-0-s2 AVAIL

errors: No known data errors

The allocation data for the dRAID with segregation enabled can be seen with the ‘zpool
list –C’.

The Special Class used in these examples comes from enabling segregation. For dRAID, this is
an automatic opt-in as it makes sense to join the two features. This opt-in can further be
observed by examining the following pool properties using ‘zpool get’. These properties are
automatically set with dRAID and are read-only.
zpool get feature@allocation_classes,segregate_special,smallblkceiling
NAME PROPERTY VALUE SOURCE
ssu_1ost1 feature@allocation_classes active local
ssu_1ost1 segregate_special on local

Using the ZFS kstat framework, one can track the allocations occurring in each of the pool
allocation classes while the file system is running.
cat /proc/spl/kstat/zfs/alloc_class_stats

name type data
normal_allocated 4 61325031915520
normal_highest_allocated 4 61325037486080
special_allocated 4 233487310848
special_highest_allocated 4 233536917504
slog_allocated 4 0
slog_highest_allocated 4 0

A.2.2 Observing Metaslab Regions

Using the zdb(8) tool, one can observe the underlying metaslabs in a zpool. With VDEV
segregation enabled, ZFS will set aside a portion (20% by default) of these regions to service
small blocks and metadata. The remaining regions are used for generic application data and
large streaming I/O.
The ‘zdb –m’ command provides copious output. The zpools created for this
demonstration each had 290 metaslabs. The listing for a pool with dRAID alone
(ssu_2ost0) is shown in Appendix B.1. A fragment of this listing is below
(the size column has been deleted to make the data
zdb -m ssu_2ost0
Metaslabs:
 vdev 0

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 44 of 96

 metaslabs 291 offset spacemap free
 --------------- ------------------- --------------- ------------
 metaslab 0 offset 0 spacemap 114 free 7.36M
 metaslab 1 offset 4000006000 spacemap 113 free 1.64G
 metaslab 2 offset 8000002000 spacemap 112 free 861M
 metaslab 3 offset c000008000 spacemap 123 free 1.04G
 metaslab 4 offset 10000004000 spacemap 122 free 1.07G

The listing for the dRAID pool segregation enabled is show in Appendix B.2. With segregation
enabled, the listing now includes an additional column for class. There are three entries
possible :

o ‘special’ means the metaslab is assigned to the special allocation class. This metaslab is part of
a mirrored VDEV that contains ZFS metadata and/or small block data.

o ‘normal’ means the metaslab is assigned to the normal class. This metaslab is part of the dRAID
VDEV and contains large block application data.

o ‘----‘ means the metaslab is unassigned. It can be assigned to the ‘special’ or ‘normal’ class as
soon as ZFS needs an allocation for that class.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 45 of 96

zdb -m ssu_lost1
Metaslabs:
 vdev 0 segregate
 metaslabs 291 offset spacemap free class
 --------------- ------------------- --------------- ------------ --------
 metaslab 0 offset 0 spacemap 115 free 122G special
 metaslab 1 offset 4000000000 spacemap 114 free 208G special
 metaslab 2 offset 8000001000 spacemap 113 free 221G special
 metaslab 3 offset c000001000 spacemap 4 free 256G special
 metaslab 4 offset 10000002000 spacemap 3 free 256G special
 metaslab 5 offset 14000000000 spacemap 2 free 256G special
 metaslab 6 offset 18000000000 spacemap 7 free 256G special
 metaslab 7 offset 1c000001000 spacemap 6 free 256G special
 metaslab 8 offset 20000001000 spacemap 5 free 256G special
 metaslab 9 offset 24000002000 spacemap 0 free 256G ----
 metaslab 10 offset 28000000000 spacemap 0 free 256G ----
 metaslab 11 offset 2c000000000 spacemap 0 free 256G ----
 metaslab 12 offset 30000001000 spacemap 0 free 256G ----
 metaslab 13 offset 34000001000 spacemap 0 free 256G ----

 metaslab 58 offset e8000008000 spacemap 123 free 7.70G normal
 metaslab 59 offset ec000004000 spacemap 125 free 1.43G normal
 metaslab 60 offset f0000000000 spacemap 124 free 1.58G normal
 metaslab 61 offset f4000006000 spacemap 126 free 1.27G normal
 metaslab 62 offset f8000002000 spacemap 127 free 1.66G normal
 metaslab 63 offset fc000008000 spacemap 128 free 2.05G normal
 metaslab 64 offset 100000004000 spacemap 129 free 2.23G normal
 metaslab 65 offset 104000000000 spacemap 130 free 2.01G normal
 metaslab 66 offset 108000006000 spacemap 131 free 1.59G normal

 metaslab 284 offset 470000004000 spacemap 349 free 12.7G normal
 metaslab 285 offset 474000000000 spacemap 350 free 21.9G normal
 metaslab 286 offset 478000006000 spacemap 351 free 19.0G normal
 metaslab 287 offset 47c000002000 spacemap 352 free 1.16G normal
 metaslab 288 offset 480000008000 spacemap 353 free 912M normal
 metaslab 289 offset 484000004000 spacemap 354 free 902M normal
 metaslab 290 offset 488000000000 spacemap 355 free 1.35G normal

A.2.3 Observing Free Space Fragmentation

We can observe the free space fragmentation details of each metaslab by running ‘zdb –mm’
to dump histograms of data allocations in each metaslab. The free space fragmentation affects
the new data block allocations and the resulting I/O performance of new files.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 46 of 96

In the samples below, the fragmentation histograms are the free segments for a power-of-two
size. So 2^13 represents 8KB free chunks and 2^24 represents 16MB free chunks. After an
aging run, there typically are no free regions in the non-segregated pool large enough to
satisfy a 16MB block on the pool with segregation disabled. In that case, ZFS would have to
stitch together a set of blocks to satisfy a 16MB block request.

As expected, the pool with large and small block isolation provided by segregation has
different fragmentation characteristics. For a metaslab that is servicing small blocks and
metadata, it is acceptable to have lots of smaller blocks that are free since later small
allocations can fill in those holes. For a metaslab that is servicing larger blocks, it would
ideally have plenty of larger contiguous ares from which to draw from. In the segregated pool,
there are still 106+2*9+4*1=128 16MB chunks free in the normal class.
metaslab 34 offset 88000004000 size 3fffffc000 spacemap 153 free 21.1G
On-disk histogram: fragmentation 21
 15: 31492 **
 16: 9869 *************
 17: 2356 ***
 18: 1665 ***
 19: 2275 ***
 20: 3543 *****
 21: 2593 ****
 22: 1097 **

As expected, the pool with large and small block isolation provided by segregation has
different fragmentation characteristics. For a metaslab that is servicing small blocks and
metadata (special class), it is acceptable to have lots of smaller blocks that are free since later
small allocations can fill in those holes.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 47 of 96

metaslab 2 offset 8000001000 size 3ffffff000 spacemap 113 free 221G special
On-disk histogram: fragmentation 8
 13: 448909 **
 14: 161708 ***************
 15: 91420 *********
 16: 29406 ***
 17: 13000 **
 18: 6912 *
 19: 5800 *
 20: 2823 *
 21: 2205 *
 22: 1317 *
 23: 819 *
 24: 431 *
 25: 211 *
 26: 163 *
 27: 135 *
 28: 2 *
 29: 0
 30: 0
 31: 0
 32: 0
 33: 0
 34: 0
 35: 0
 36: 1 *

For a metaslab that is servicing larger blocks (normal class), it would ideally have plenty of
larger contiguous ares from which to draw from. In the segregated pool, there are still
106+2*9+4*1=128 16MB chunks free in the normal class.
metaslab 77 offset 134000002000 size 3fffffe000 spacemap 142 free 19.9G normal
On-disk histogram: fragmentation 13
 16: 285 ***
 17: 484 *****
 18: 810 ********
 19: 1449 **************
 20: 4302 **
 21: 1997 *******************
 22: 839 ********
 23: 107 *
 24: 106 *
 25: 9 *
 26: 1 *

A.2.4 Observing Allocations by Category

The ‘zdb –mm’ command also includes an Allocation Summary section that shows what
allocations were made by category. This can be used to confirm that the metaslab regions are

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 48 of 96

allocating from the expected class. Both examples below are from a dump of a zpool with
segregation enabled.

For a normal class metaslab, the Allocation Summary shows that all of the blocks allocated to
the metaslab are in the generic category.
metaslab 75 offset 12c000000000 size 4000000000 spacemap 141 free 24.1G normal
Allocation Summary: 232G allocated
 metadata: 0.0%
 smallblks: 0.0%
 dedup: 0.0%
 generic: 100.0% ********************************

For a special class metaslab, the blocks allocated belong to the metadata and small block
categories.
metaslab 0 offset 0 size 4000000000 spacemap 115 free 122G special
Allocation Summary: 134G allocated
 metadata: 62.1% ********************
 smallblks: 37.9% ************
 dedup: 0.0%
 generic: 0.0%

A normal class allocation may include metadata and small block categories as well as generic.
A special class allocation will only hold metadata and small blocks. The special class cannot
hold a generic category allocation.

A.3 Usage Examples of End-to-End 16MB File Block I/Os
The example consists of two parts: End-to-End Streaming, to show the transfer of 16MB from
Lustre clients to the ZFS, and Fragmentation Improvements, to show the improved
performance with Metadata Isolation. For both examples, we used a cluster that had 8 Lustre
clients and 4 Lustre OSSs. Each OSS had a single 43 drive dRAID2 OS.

A.3.1 Configuring the file system for 16MB I/Os

Each file system component along the I/O path must be configured to enable 16MB I/O.
Starting from the Lustre server, 16MB I/Os are set first at ZFS, then Linux, then Lustre OSS,
and then, finally, the Lustre client.

A.3.1.1 ZFS on the Lustre OSS

On each Lustre OSS, set ZFS to accept and use 16MB I/Os with the following steps:
1. Set “zfs_max_recordsize” to 16MB (16777216).
echo "16777216" > /sys/module/zfs/parameters/zfs_max_recordsize

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 49 of 96

2. Create the zpool while specifying a 16MB record size using the “recordsize” option.
zpool create -o ashift=12 -o segregate_special=on -o cachefile=none -O
recordsize=16MB ssu_1ost1 draid2 cfg=test_2_8_3_43_draidcfg.nvl mpathfn
mpathfa mpathcx mpathbs mpathan mpathu mpatheu mpathdp mpathck mpathbf
mpathaa mpathh mpatheh mpathdc mpathfm mpathaz mpathcw mpathbr mpatham mpatht
mpathdd mpathdo mpathcj mpathbe mpathg mpathfl mpatheg mpathdb mpathay
mpathcv mpathbq mpathal mpaths mpathfx mpathes mpathdn mpathci mpathbd mpathf
mpathfk mpathef mpathda mpathax

The “-o ashift=12” option is only necessary to force 4KB sectors on hard drives that
pretend to have 512-byte sectors for backward compatibility.

3. Enable the ZFS feature@large_blocks flag for the zpool. Verify the feature with the

zpool get all command.
zpool feature@large_blocks=enabled ssu_1ost1

zpool get all ssu_1ost1 |grep large_blocks
ssu_1ost1 feature@large_blocks active local

A.3.1.2 Linux on the Lustre OSS

The Linux block I/O layer for each disk drive on the Lustre OSS must be configured to handle
2MB I/Os. This is done by setting the max_sectors_kb parameter to 4096 (512B/sector *
4096 sectors = 2MB) and the scheduler to noop. The following script was run before the
example started:
for i in $(find /sys/devices -print |grep max_sectors_kb |grep -v ata)
do
 echo 4096 > $i
done

for x in $(find /sys/devices -print |grep scheduler |grep -v ata)
do
 echo noop > $x
done

A.3.2 Lustre OSS

The Lustre OSS itself is configured to use 16MB by using the Lustre control interface, lctl, to
set the obdfilter read and write size (brw_size) to 16:
lctl set_param obdfilter.*.brw_size=16

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 50 of 96

obdfilter.nlsdraid-OST0001.brw_size=16

A.3.2.1 Lustre Client

The RPC size used by the Lustre client is controlled by the max_pages_per_rpc parameter.
Each page is 4096 bytes. By default, Lustre sets max_pages_per_rpc to 256 to use 1MB
RPCs (256*4096=1048576). Starting in Lustre 2.9, it is possible to raise the parameter to
4096 to use 16MB RPCs (4096*4096 = 16MB). To make this change, we use pdsh to run lctl on
each compute node to set the RPC size on the Lustre client for each OSS connection.
pdsh -w node0[1-8] "/usr/sbin/lctl set_param osc.*.max_pages_per_rpc=16M"
node01: osc.nlsdraid-OST0000-osc-ffff8820228e3000.max_pages_per_rpc=4096
node01: osc.nlsdraid-OST0001-osc-ffff8820228e3000.max_pages_per_rpc=4096
node01: osc.nlsdraid-OST0002-osc-ffff8820228e3000.max_pages_per_rpc=4096
node01: osc.nlsdraid-OST0003-osc-ffff8820228e3000.max_pages_per_rpc=4096
...
node04: osc.nlsdraid-OST0000-osc-ffff8816686ea000.max_pages_per_rpc=4096
node04: osc.nlsdraid-OST0001-osc-ffff8816686ea000.max_pages_per_rpc=4096
node04: osc.nlsdraid-OST0002-osc-ffff8816686ea000.max_pages_per_rpc=4096
node04: osc.nlsdraid-OST0003-osc-ffff8816686ea000.max_pages_per_rpc=4096

A.3.3 Prepping Lustre Counters

Lustre maintains a number of useful counters on the client and server to help evaluate the
performance of different components of the file system. For the End-to-End 16MB
demonstration, we used the “rpc_stats” structures on the client and “brw_stats” structure on
the server. The scripts used during the demonstration are described below.

A.3.3.1 RPC Stats

RPC stats are kept on the Lustre client to show the distribution of RPCs issued by the client to
the Lustre server. The rpc_stats variable on each client can be cleared before the test and the
read after the test completes.

A.3.3.2 clear_rpc.sh

The clear_rpc.sh script cleared the rpc_stats counter structure on all 8 clients on the cluster.
This script is run before each performance test.
#!/bin/bash

for host in node01 node02 node03 node04 node05 node06 node07 node08
do

 echo "clear on $host"

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 51 of 96

 ssh $host "/usr/sbin/lctl set_param osc.*.rpc_stats=0"
 echo

done

When complete, the script shows that the counters have been zeroed:
./clear_rpc.sh
clear on node01
osc.nlsdraid-OST0000-osc-ffff8820228e3000.rpc_stats=0
osc.nlsdraid-OST0001-osc-ffff8820228e3000.rpc_stats=0
osc.nlsdraid-OST0002-osc-ffff8820228e3000.rpc_stats=0

A.3.3.3 show_rpc.sh

The show_rpc script displays the rpc_stats structure from each Lustre client.
#!/bin/bash

for host in node01 node02 node03 node04 node05 node06 node07 node08
do

 ssh $host "/bin/hostname; cat /proc/fs/lustre/osc/nlsdraid-OST000[1-
3]*/rpc_stats | grep -A14 'pages per' " |egrep --color=always '.*4096:.*|$'
 echo

done

The output from this script is used to evaluate how the Lustre clients sent RPCs to the servers.

A.3.4 BRW Stats

The Lustre server maintains counters for the block I/O requests that it sends to the underlying
Linux file system. The counters are cleared before a test, and then read afterwards.

A.3.4.1 clear_brw.sh

The cluster had 4 Lustre OSS. This script cleared the brw_stats structure on each server.
#!/bin/bash

for host in lustre1 lustre2 lustre3 lustre4
done

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 52 of 96

When complete, the script shows that the servers have been zeroed:
./clear_brw.sh
obdfilter.nlsdraid-OST0000.brw_stats=0
obdfilter.nlsdraid-OST0001.brw_stats=0
obdfilter.nlsdraid-OST0002.brw_stats=0
obdfilter.nlsdraid-OST0003.brw_stats=0

A.3.4.2 show_brw.sh

The show_brw script shows the block distribution sent to the underlying storage.
#!/bin/bash

for host in lustre1 lustre2 lustre3 lustre4
do

 ssh $host "/bin/hostname; cat /proc/fs/lustre/osd-zfs/*/brw_stats|grep -A36
'size' " |egrep --color=always '.*16M.*|$'
 echo

done

The output from this script is shown in Section A.4.2.

A.4 End to End Streaming
IOR was used to generate 16MB I/O from the clients using file per process with a sequential
workload.
mpirun -wdir /mnt/lustre -np 8 -machinefile hosts /root/natasha-bin/ior -F
-i 1 -s 20480 -b 16m -t 16m
...
Command line used: /root/natasha-bin/ior -F -i 1 -s 20480 -b 16m -t 16m
Machine: Linux node01

Test 0 started: Tue Jun 20 14:37:07 2017
Summary:
 api = POSIX
 test filename = testFile
 access = file-per-process
 ordering in a file = sequential offsets
 ordering inter file= no tasks offsets
 clients = 8 (1 per node)
 repetitions = 1
 xfersize = 16 MiB
 blocksize = 16 MiB

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 53 of 96

 aggregate filesize = 2560 GiB

The IOR test was configured so that each of the four OSS received I/O from two different
clients:
node01 → testFile.00000000 on ost0

node02 → testFile.00000001 on ost1

node03 → testFile.00000002 on ost2

node04 → testFile.00000003 on ost3

node05 → testFile.00000004 on ost0

node05 → testFile.00000005 on ost1

node07 → testFile.00000006 on ost2

node08 → testFile.00000007 on ost3

While the workload tests ran, a number of Linux tools were used to expose the I/O sizes at
each step of the I/O flow, from the Lustre clients to the ZFS disk devices. These tools are
summarized in Table 5-2 and show at what point each tool is used in the I/O flow.

Table 5-2. I/O Size Evaluation Tools

 Metric Tool Run on Display

1 RPC Stats Lctl get_param osc.*.rpc_stats Lustre Client Histogram of the RPC sizes and
number from the client

2 BRW Stats Lctl get_param
obdfilter.*.brw_stats

Lustre Server
(OST)

Histograms of RPC sizes
received on each OST

3 ZFS iostats Zpool iostat –r ost0 Lustre Server
(ZFS)

Tables of request sizes in each
zpool issued to disk

4 Disk Stats visualized with netdump Lustre Server
(Linux)

graphic display of

Lustre
Client

Lustre
Server

ZFS
dRAID3 Block I/O

Data

Metadata

Test Tool

16MB 2MB 2MB Target

Zpools
1 2 3

16MB 16MB

4

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 54 of 96

A.4.1 Lustre Client RPC stats

Before running the IOR test, the clear_rpc.sh script (section A.3.3.2) cleared the rcp_stats
structure on each Lustre client and the clear_brw.sh script (section A.3.4.1) cleared the
brw_stats structure on each Lustre OSS.

The show_rpc.sh script (section A.3.3.3) displayed the rpc_stats structure from each client.
With 4KB sized pages, 4096 pages per RPC represent 16MB per RPC. All clients showed a
result similar to the one below in which all RPCs sent during the IOR run work 16MB in size.
node01 ost0
pages per rpc rpcs % cum % | rpcs % cum %
1: 0 0 0 | 0 0 0
2: 0 0 0 | 0 0 0
4: 0 0 0 | 0 0 0
8: 0 0 0 | 0 0 0
16: 0 0 0 | 0 0 0
32: 0 0 0 | 0 0 0
64: 0 0 0 | 0 0 0
128: 0 0 0 | 0 0 0
256: 0 0 0 | 0 0 0
512: 0 0 0 | 0 0 0
1024: 0 0 0 | 0 0 0
208: 0 0 0 | 0 0 0
4096: 0 0 0 | 3500 100 100

A.4.2 Lustre Server BRW stats

We then verified that 16MB IO blocks were sent through the Lustre server with the
show_brw.sh script (section A.3.4.2):
./show_brw.sh
ssu1_oss1
disk I/O size ios % cum % | ios % cum %
16M: 0 0 0 | 2048 100 100

ssu1_oss2
disk I/O size ios % cum % | ios % cum %
16M: 0 0 0 | 2048 100 100

ssu2_oss1
disk I/O size ios % cum % | ios % cum %
16M: 0 0 0 | 314290 100 100

ssu2_oss2
disk I/O size ios % cum % | ios % cum %
16M: 0 0 0 | 306408 100 100

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 55 of 96

A.4.3 ZFS I/O Sizes

Using the ‘zpool iostat’ command, it is possible to see how the 16MB I/Os from Lustre are
converted to disk I/Os:
$ zpool iostat -r
ssu_2ost0 sync_read sync_write async_read async_write scrub
req_size ind agg ind agg ind agg ind agg ind agg
---------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
512 0 0 0 0 0 0 0 0 0 0
1K 0 0 0 0 0 0 0 0 0 0
2K 0 0 0 0 0 0 0 0 0 0
4K 0 0 0 0 0 0 171 0 0 0
8K 0 0 0 0 0 0 3 42 0 0
16K 0 0 0 0 0 0 0 0 0 0
32K 0 0 0 0 0 0 0 0 0 0
64K 0 0 0 0 0 0 0 0 0 0
128K 0 0 0 0 0 0 0 0 0 0
256K 0 0 0 0 0 0 0 0 0 0
512K 0 0 0 0 0 0 0 0 0 0
1M 0 0 0 0 0 0 0 0 0 0
2M 0 0 0 0 0 0 2.05K 0 0 0
4M 0 0 0 0 0 0 0 0 0 0
8M 0 0 0 0 0 0 0 0 0 0
16M 0 0 0 0 0 0 0 0 0 0

A plot of the output (Figure 5-3) clearly shows that the IOR test generated mostly 2MB write
I/Os to disk.

Figure 5-3. Size Distribution of ZFS Write I/O

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 56 of 96

A.4.4 Linux Disk stats and Bandwidths

The Linux netdump utility was used to graphically display the I/O sizes and bandwidths for
each disk during the IOR run. The plots show reads on top and writes on the bottom. Each
line represents the data from a single drive. Time is scrolling right to left along the horizontal
axis so that the oldest data are on the left of the screen. The time interval shown is at the
transition from when IOR completes the writing phase of the test and begins reading the files
just written.

The following figure (Figure 5-4.) shows the I/O size plot. The average write size from the 43
disks varies from 1000 KB to 1700 KB in size. Although the results above (section A.4.3) show
that ZFS is sending 2MB I/Os to Linux , netdump reports the average Linux I/O size. Since ZFS
writes a lot of metadata during commits, as the block pointer tree is updated at the end of
each write transaction group, the average write size is expected to be less than 2MB. The read
plot, however, consistently shows that Linux is reading 2000 KB from all disks.

Figure 5-4. Read/Write Disk Stats for Sequential Workload

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 57 of 96

The next figure (Figure 5-5) shows the write and read bandwidth during the same interval. The
data show that all disks are writing 60-80 MB/s and reading 30-50 MB/s.

Figure 5-5. Write/Read Bandwidth for Sequential Workload

A.4.5 Linux disk stats for a random workload

The IOR test was repeated, using random file offsets for the 16MB I/Os to generate a random
workload.
mpirun -wdir /mnt/lustre -np 12 -machinefile hosts /root/natasha-bin/ior -z
-F -i 1 -s 10240 -b 16m -t 16m
IOR-3.0.1: MPI Coordinated Test of Parallel I/O

Began: Wed Jun 21 08:43:14 2017
Command line used: /root/natasha-bin/ior -z -F -i 1 -s 10240 -b 16m -t 16m
Machine: Linux node01

Test 0 started: Wed Jun 21 08:43:14 2017
Summary:
 api = POSIX
 test filename = testFile
 access = file-per-process
 ordering in a file = random offsets
 ordering inter file= no tasks offsets
 clients = 12 (2 per node)
 repetitions = 1
 xfersize = 16 MiB
 blocksize = 16 MiB

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 58 of 96

The impact of the unaligned I/O will be seen most clearly when the data is written to disk. The
following diagram (Figure 5-6) shows the I/O size plots during IOR’s transition from writes to
reads. As above, read I/Os are consistently 2000 KB in size, as expected. Write I/Os, however,
are more variable, showing a smaller size range (200-1600 KB) and greater differences
between drives.

Figure 5-6. Read/Write Disk Stats for Random Workload

The bandwidth plot for the random workload (Figure 5-7) shows that, as above, the drives are
writing and reading at fairly consistent rates, with no clear outliers. Nonetheless, performance

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 59 of 96

per drive of 40 MB/s for writes and 20 MB/s for reads is lower than with the sequential
workload above.

Figure 5-7. Write/Read Bandwidth for Random Workload

A.5 Fragmentation Improvements
Initial testing of large 16MB I/O had shown the impact of file system fragmentation, which
occurred naturally as the file system aged, on performance. The metadata isolation project
grew out of these early experiments. To demonstrate the benefit of metadata isolation we
compared pools with and without segregation and then showed how segregation improves
performance as the file system becomes fragmented.

A.5.1 File System Fragmention

When ZFS on Linux enabled support 16MB blocks, our testing found that as on-disk
fragmentation increased, performance on I/O benchmarks decreased. Our early testing used a
python file-ager. An iozone benchmark would be run on a clean file system, then we would
run a python-based file ager to fragment the file system. The initial tool would write a
concurrent combination of large files with large blocks, many smaller files 1/16th of the large
block size, and random sized files. The initial tests varied the I/O request size against the ZFS
block size. The results clearly show the lower performance for the dirty file systems (Figure
5-8).

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 60 of 96

Figure 5-8. Fragmentation Impact on RAIDZ1 Performance

A.5.2 Performance Improvements with Segregated Metadata

Two pools were created, one without segregation (ssu_2ost0) and one with segregation
enabled (ssu_1ost1). Both pools were fragmented using the procedure described in the
previous section, which left each pool with over 90% of the storage space allocated. An
immediate difference could be seen from the fragmentation metric that ZFS maintains for the
pool: the zpool without fragmentation had a significantly higher fragmentation score than the
zpool with segregation:
• ssu_2ost0, dRAID without segregation enabled:
#zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
ssu_2ost0 72.7T 69.6T 3.15T - 24% 95% 1.00x ONLINE -

• ssu_1ost1, dRAID with segregation of special allocation class enabled:
#zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
ssu_1ost1 72.7T 62.9T 9.9T - 3% 92% 1.00x ONLINE -

Segregating the ZFS metadata and small block data to a separate group of metaslabs within
the zpool keeps the rest of the dRAID available for efficient large block allocations. The
fragmentation metric for each metaslab is available through the ‘zdb –mm’ command (Section
A.2.3). The plot of the ZFS fragmentation metric (Figure 5-9) shows that without segregation,

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 61 of 96

the metaslabs for the plain dRAID are more fragmented than the metaslabs on a dRAID with
segregation enabled.

Figure 5-9. Fragmentation Comparison of Segregated and Unsegregated dRAIDs

The average ZFS fragmentation score is over 17 with many metaslabs peaking over 30. On
the other hand, segregation of the metadata keeps the metslab fragmentation score below 10
(average <3). On the dRAID with the segregated VDEV, the first 20% of the metaslabs are
assigned to the special class. This means that the metaslabs numbered 58 and higher (Figure
5-9) are all normal class and contain generic data larger than 32KB in size. Segregation
simplifies block allocation to these metaslabs, reduces fragmentation, and improves
performance.

We ran the following iozone test on the cluster using all 8 Lustre clients.
#iozone -t 8 -r 16m -i 0 -i 1 -s 256g

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 62 of 96

The test results provide aggregate throughput for all 8 nodes after writing, rewriting, reading
and rereading to the Lustre servers. The results (Figure 5-10) show that without the special
class enabled, performance on a fragmented file system is worse than on a file system with
segregation enabled.

Figure 5-10. Performance Impact of Segregation on Fragmented File System

A.6 Examples of ZED Fault Handling using dRAID for ZFS

A.6.1 Multi-Fault Handling

This example focuses on the interaction of the Diagnosis Engine and Retire Agent with ZFS in
the presence of multiple drive failures, which exercises the features described above in
Section 3.

The examples show that while dRAID rebuild is in progress, the arrival of the second or third
failure in the array would be saved within the Retire Agent until the current rebuild completed,
upon which the Agent would retry the pending request.

To introduce the drive faults for the demonstration, we injected IO read errors using zinject to
force ZED to fail the drives. The Diagnosis Engine receives these error events and once the
number of faults received exceeds a failure rate threshold, the Engine will initiate a fault
message. The Retire Agent then automatically begins to use the first of the dRAID spares to
rebuid the failed drive.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 63 of 96

A.6.1.1 dRAID Configuration

A triple parity dRAID was created on the cluster with a single parity group (7+3) and 3
distributed spares. We started with a clean, populated pool with all cache cleared:
 pool: mfault
 state: ONLINE
 scan: resilvered 368K in 0h0m1s with 0 errors on Tue Jun 27 20:11:10 2017
config:

 NAME STATE READ WRITE CKSUM
 mfault ONLINE 0 0 0
 draid3-0 ONLINE 0 0 0
 sdb ONLINE 0 0 0
 sdc ONLINE 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdi ONLINE 0 0 0
 sdj ONLINE 0 0 0
 sdk ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0
 spares
 $draid3-0-s0 AVAIL
 $draid3-0-s1 AVAIL
 $draid3-0-s2 AVAIL

errors: No known data errors

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 64 of 96

A.6.1.2 First Failure

zinject() was used to send I/O read errors to drives sdb, sdg and sdm. When the Diagnosis
Engine began receiving errors, the zed log showed that the Diagnosis Engine opened a failure
case for each VDEV:
Diagnosis Engine: case opened (cc7e90a9-f96d-4937-ace2-54502acfc9ec)
Diagnosis Engine: opening case for vdev 13059866864003676862 due to

'ereport.fs.zfs.io'
. . .
Diagnosis Engine: case opened (602adf2c-c4dc-4613-88de-de3442182e6d)
Diagnosis Engine: opening case for vdev 5296963598540981156 due to

'ereport.fs.zfs.io'
. . .
Diagnosis Engine: case opened (ae95fc42-ccd1-4a03-924c-649ecda66de8)
Diagnosis Engine: opening case for vdev 4853321467358484743 due to

'ereport.fs.zfs.io'

The Diagnosis Engine used each opened case to track the errors received for each VDEV.
Eventually the first drive (sdb) accumulated enough errors that the Diagnosis Engine
generated a fault event for the drive. The Retire Agent received the fault, which caused it to
report the failed drive to ZFS, and then initiated the dRAID rebuild of the first distributed spare
($draid3-0-s0).
Diagnosis Engine: solving fault 'fault.fs.zfs.vdev.io'

zed_fault_event:
 uuid: cc7e90a9-f96d-4937-ace2-54502acfc9ec
 class: fault.fs.zfs.vdev.io
 code: ZFS-8000-FD
 certainty: 100
 scheme: zfs
 pool: 1320611588736634121
 vdev: 13059866864003676862

Diagnosis Engine: case solved (cc7e90a9-f96d-4937-ace2-54502acfc9ec)
Diagnosis Engine: removing timer (0x7f12d000d720)
Retire Agent: zfs_retire_recv: 'list.suspect'
Retire Agent: matched vdev 13059866864003676862
Retire Agent: zpool_vdev_fault: vdev 13059866864003676862 on 'mfault'
Retire Agent: zpool_vdev_replace 'sdb' with spare '$draid3-0-s0'

Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'

The last log messages show that ZFS had faulted the drive and sent the event through the
Diagnosis Engine to the Retire Agent.

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 65 of 96

Zpool status confirms that the first drive had been faulted and that the rebuild was in
progress.
 pool: mfault
 state: DEGRADED
status: One or more devices are faulted in response to persistent errors.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Replace the faulted device, or use 'zpool clear' to mark the device
 repaired.
 scan: rebuild in progress since Tue Jun 27 20:03:41 2017
 2.70M scanned out of 128G at 923K/s, 40h25m to go
 1.40M rebuilt, 0.00% done
config:

 NAME STATE READ WRITE CKSUM
 mfault DEGRADED 0 0 0
 draid3-0 DEGRADED 0 0 0
 spare-0 DEGRADED 0 0 0
 sdb FAULTED 66 0 0 too many errors
 $draid3-0-s0 ONLINE 0 0 0 (repairing)
 sdc ONLINE 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdg ONLINE 65 0 0 (repairing)
 sdh ONLINE 0 0 0 (repairing)
 sdi ONLINE 0 0 0
 sdj ONLINE 0 0 0
 sdk ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 38 0 0 (repairing)
 spares
 $draid3-0-s0 INUSE currently in use
 $draid3-0-s1 AVAIL
 $draid3-0-s2 AVAIL
errors: No known data errors

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 66 of 96

A.6.1.3 Second Failure

While the first rebuild was proceeding, the zinject() continued to send I/O read failures to the
other two drives (sdg, sdm). Eventually, the Diagnosis Engine faulted the second drive (sdg).
The Retire Agent received the fault and forwarded the fault event to ZFS. The Agent then
attempted to use the second distributed spare but detected that the zpool was busy with the
first rebuild and saved the spare-in request. ZFS received the fault event from the Retire
Agent, then sent a state change event, which both the Diagnosis Engine and Retire Agent
received.
Diagnosis Engine: solving fault 'fault.fs.zfs.vdev.io'

zed_fault_event:
 uuid: 602adf2c-c4dc-4613-88de-de3442182e6d
 class: fault.fs.zfs.vdev.io
 code: ZFS-8000-FD
 certainty: 100
 scheme: zfs
 pool: 1320611588736634121
 vdev: 5296963598540981156

Diagnosis Engine: case solved (602adf2c-c4dc-4613-88de-de3442182e6d)
Diagnosis Engine: removing timer (0x7f12d0045880)
Retire Agent: zfs_retire_recv: 'list.suspect'
Retire Agent: matched vdev 5296963598540981156
Retire Agent: zpool_vdev_fault: vdev 5296963598540981156 on 'mfault'
Retire Agent: zpool_vdev_replace 'sdg' with spare '$draid3-0-s1'
Retire Agent: zpool_vdev_attach 'sdg' busy. Saving request.'
Retire Agent: Saved request pool_guid 1320611588736634121 vdev_guid

5296963598540981156.

Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'

After the first rebuild completed, the Retire Agent received the rebuild_finish event, then
replayed the retained spare request for the second distributed spare drive ($draid3-0-s1).
Retire Agent: zfs_retire_recv: 'sysevent.fs.zfs.rebuild_finish'
Retire Agent: Replaying spare request pool_guid 1320611588736634121 vdev_guid
5296963598540981156.
Retire Agent: matched vdev 5296963598540981156
Retire Agent: zpool_vdev_replace 'sdg' with spare '$draid3-0-s1'

Initiation of this second dRAID rebuild could be seen in the zpool status.
 pool: mfault

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 67 of 96

 state: DEGRADED
status: One or more devices are faulted in response to persistent errors.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Replace the faulted device, or use 'zpool clear' to mark the device
 repaired.
 scan: rebuild in progress since Tue Jun 27 20:05:43 2017
 11.6G scanned out of 128G at 1.29G/s, 0h1m to go
 762M rebuilt, 9.07% done
config:

 NAME STATE READ WRITE CKSUM
 mfault DEGRADED 0 0 0
 draid3-0 DEGRADED 0 0 0
 spare-0 DEGRADED 0 0 0
 sdb FAULTED 66 0 0 too many errors
 $draid3-0-s0 ONLINE 0 0 0 (repairing)
 sdc ONLINE 0 0 0 (repairing)
 sdd ONLINE 0 0 0 (repairing)
 sde ONLINE 0 0 0 (repairing)
 sdf ONLINE 0 0 0 (repairing)
 spare-5 DEGRADED 0 0 0
 sdg FAULTED 65 0 0 too many errors
 $draid3-0-s1 ONLINE 0 0 0 (repairing)
 sdh ONLINE 0 0 0 (repairing)
 sdi ONLINE 0 0 0 (repairing)
 sdj ONLINE 0 0 0 (repairing)
 sdk ONLINE 0 0 0 (repairing)
 sdl ONLINE 0 0 0 (repairing)
 sdm FAULTED 495 0 0 too many errors
 spares
 $draid3-0-s0 INUSE currently in use
 $draid3-0-s1 INUSE currently in use
 $draid3-0-s2 AVAIL
errors: No known data errors

A.6.1.4 Third Failure

The third fault occurred while the first rebuild was in progress. The Retire Agent received the
fault from the Diagnosis Engine and sent a fault event for the drive to ZFS. The Agent
attempted to swap in the next available spare (still the 2nd distributed spare drive) only to find
that the device was busy because a rebuild was in progress. The Retire Agent saved the
request to be replayed later after the rebuild completes.
Diagnosis Engine: solving fault 'fault.fs.zfs.vdev.io'

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 68 of 96

zed_fault_event:
 uuid: ae95fc42-ccd1-4a03-924c-649ecda66de8
 class: fault.fs.zfs.vdev.io
 code: ZFS-8000-FD
 certainty: 100
 scheme: zfs
 pool: 1320611588736634121
 vdev: 4853321467358484743

Diagnosis Engine: case solved (ae95fc42-ccd1-4a03-924c-649ecda66de8)
Diagnosis Engine: removing timer (0x7f12d0045460)
Retire Agent: zfs_retire_recv: 'list.suspect'
Retire Agent: matched vdev 4853321467358484743
Retire Agent: zpool_vdev_fault: vdev 4853321467358484743 on 'mfault'
Retire Agent: zpool_vdev_replace 'sdm' with spare '$draid3-0-s1'
Retire Agent: zpool_vdev_attach 'sdm' busy. Saving request.'
Retire Agent: Saved request pool_guid 1320611588736634121 vdev_guid
4853321467358484743.
Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'

Because the fault of sdm is the second spare request saved, the drive will not be replaced until
after the dRAID recovers from the fault of the second failed drive (sdg). The replacement of
sdm to the third distributed spare ($draid3-0-s2) starts after the Retire Agent received the
rebuild_finish for sdg.
Retire Agent: zfs_retire_recv: 'sysevent.fs.zfs.rebuild_finish'
Retire Agent: Replaying spare request pool_guid 1320611588736634121 vdev_guid
4853321467358484743.
Retire Agent: matched vdev 4853321467358484743
Retire Agent: zpool_vdev_replace 'sdm' with spare '$draid3-0-s2'

Zpool status shows that rebuild of the third failed drive was in progress.
 pool: mfault
 state: DEGRADED
status: One or more devices are faulted in response to persistent errors.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Replace the faulted device, or use 'zpool clear' to mark the device
 repaired.
 scan: rebuild in progress since Tue Jun 27 20:07:44 2017
 1.96G scanned out of 128G at 1002M/s, 0h2m to go
 103M rebuilt, 1.53% done
config:

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 69 of 96

 NAME STATE READ WRITE CKSUM
 mfault DEGRADED 0 0 0
 draid3-0 DEGRADED 0 0 0
 spare-0 DEGRADED 0 0 0
 sdb FAULTED 66 0 0 too many errors
 $draid3-0-s0 ONLINE 0 0 0 (repairing)
 sdc ONLINE 0 0 0 (repairing)
 sdd ONLINE 0 0 0 (repairing)
 sde ONLINE 0 0 0 (repairing)
 sdf ONLINE 0 0 0 (repairing)
 spare-5 DEGRADED 0 0 0
 sdg FAULTED 65 0 0 too many errors
 $draid3-0-s1 ONLINE 0 0 0 (repairing)
 sdh ONLINE 0 0 0 (repairing)
 sdi ONLINE 0 0 0 (repairing)
 sdj ONLINE 0 0 0 (repairing)
 sdk ONLINE 0 0 0 (repairing)
 sdl ONLINE 0 0 0 (repairing)
 spare-11 DEGRADED 0 0 0
 sdm FAULTED 495 0 0 too many errors
 $draid3-0-s2 ONLINE 0 0 0 (repairing)
 spares
 $draid3-0-s0 INUSE currently in use
 $draid3-0-s1 INUSE currently in use
 $draid3-0-s2 INUSE currently in use
errors: No known data errors

A.6.1.5 Rebuild Complete
ZFS will send a state change event to the Diagnosis Engine after the rebuild of each drive
completes to indicate that the repair is complete and the replaced drive is healthy.

Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Diagnosis Engine: closing case after a device statechange to healthy
Diagnosis Engine: case closed (cc7e90a9-f96d-4937-ace2-54502acfc9ec)
Diagnosis Engine: serd_destroy zfs_1253c13e38e94d09_b53df7b7fad57abe_io
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'
Retire Agent: marking repaired vdev 13059866864003676862 on pool
1320611588736634121

Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Diagnosis Engine: closing case after a device statechange to healthy
Diagnosis Engine: case closed (602adf2c-c4dc-4613-88de-de3442182e6d)
Diagnosis Engine: serd_destroy zfs_1253c13e38e94d09_498298540f35c3a4_io

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 70 of 96

Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'
Retire Agent: marking repaired vdev 5296963598540981156 on pool
1320611588736634121

Diagnosis Engine: resource event 'resource.fs.zfs.statechange'
Diagnosis Engine: closing case after a device statechange to healthy
Diagnosis Engine: case closed (ae95fc42-ccd1-4a03-924c-649ecda66de8)
Diagnosis Engine: serd_destroy zfs_1253c13e38e94d09_435a76291aae1907_io
Retire Agent: zfs_retire_recv: 'resource.fs.zfs.statechange'
Retire Agent: marking repaired vdev 4853321467358484743 on pool
1320611588736634121

Upon completion of the last rebuild, zpool status showed that all three spares were in use and
the pool was restored to full redundancy. Note, however, that ZFS considers use of a spare
device to be a fault and the zpool status will continue to report the array to be in a degraded
state until the failed drives are physically replaced, the recovered blocks are rebalanced to the
replacement drives, and the distributed spare drives are restored and available for the next
failure.
 pool: mfault
 state: DEGRADED
status: One or more devices are faulted in response to persistent errors.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Replace the faulted device, or use 'zpool clear' to mark the device
 repaired.
 scan: rebuilt 12.8G in 0h2m25s with 0 errors on Tue Jun 27 20:10:09 2017
config:

 NAME STATE READ WRITE CKSUM
 mfault DEGRADED 0 0 0
 draid3-0 DEGRADED 0 0 0
 spare-0 DEGRADED 0 0 0
 sdb FAULTED 66 0 0 too many errors
 $draid3-0-s0 ONLINE 0 0 0
 sdc ONLINE 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdf ONLINE 0 0 0
 spare-5 DEGRADED 0 0 0
 sdg FAULTED 65 0 0 too many errors
 $draid3-0-s1 ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdi ONLINE 0 0 0
 sdj ONLINE 0 0 0
 sdk ONLINE 0 0 0

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 71 of 96

 sdl ONLINE 0 0 0
 spare-11 DEGRADED 0 0 0
 sdm FAULTED 495 0 0 too many errors
 $draid3-0-s2 ONLINE 0 0 0
 spares
 $draid3-0-s0 INUSE currently in use
 $draid3-0-s1 INUSE currently in use
 $draid3-0-s2 INUSE currently in use
errors: No known data errors

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 72 of 96

Appendix B. dRAID Configuration Examples

B.1 ‘zdb –m’ for a dRAID pool without segregation
The following listing shows the status of the simple 43-drive dRAID previously described in section A.2.2. This dRAID was not
configured to use metadata isolation. As a result, all metaslabs are used for all categories of ZFS storage (generic, metadata, small
block).
[root@ssu2_oss1]# zdb -m ssu_2ost0
Metaslabs:
 vdev 0
 metaslabs 291 offset size spacemap free
 --------------- ------------------- --------------- --------------- ------------
 metaslab 0 offset 0 size 4000000000 spacemap 114 free 7.36M
 metaslab 1 offset 4000006000 size 3fffffa000 spacemap 113 free 1.64G
 metaslab 2 offset 8000002000 size 3fffffe000 spacemap 112 free 861M
 metaslab 3 offset c000008000 size 3fffff8000 spacemap 123 free 1.04G
 metaslab 4 offset 10000004000 size 3fffffc000 spacemap 122 free 1.07G
 metaslab 5 offset 14000000000 size 4000000000 spacemap 124 free 993M
 metaslab 6 offset 18000006000 size 3fffffa000 spacemap 125 free 794M
 metaslab 7 offset 1c000002000 size 3fffffe000 spacemap 126 free 1.03G
 metaslab 8 offset 20000008000 size 3fffff8000 spacemap 128 free 973M
 metaslab 9 offset 24000004000 size 3fffffc000 spacemap 127 free 1.19G
 metaslab 10 offset 28000000000 size 4000000000 spacemap 130 free 1.86G
 metaslab 11 offset 2c000006000 size 3fffffa000 spacemap 129 free 1.15G
 metaslab 12 offset 30000002000 size 3fffffe000 spacemap 132 free 1.47G
 metaslab 13 offset 34000008000 size 3fffff8000 spacemap 131 free 746M
 metaslab 14 offset 38000004000 size 3fffffc000 spacemap 134 free 1.34G
 metaslab 15 offset 3c000000000 size 4000000000 spacemap 133 free 1.25G
 metaslab 16 offset 40000006000 size 3fffffa000 spacemap 136 free 1001M
 metaslab 17 offset 44000002000 size 3fffffe000 spacemap 135 free 1.31G
 metaslab 18 offset 48000008000 size 3fffff8000 spacemap 138 free 1.03G
 metaslab 19 offset 4c000004000 size 3fffffc000 spacemap 137 free 1.01G
 metaslab 20 offset 50000000000 size 4000000000 spacemap 140 free 1.17G
 metaslab 21 offset 54000006000 size 3fffffa000 spacemap 139 free 1.13G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 73 of 96

 metaslab 22 offset 58000002000 size 3fffffe000 spacemap 142 free 992M
 metaslab 23 offset 5c000008000 size 3fffff8000 spacemap 141 free 863M
 metaslab 24 offset 60000004000 size 3fffffc000 spacemap 144 free 7.61G
 metaslab 25 offset 64000000000 size 4000000000 spacemap 143 free 4.92G
 metaslab 26 offset 68000006000 size 3fffffa000 spacemap 145 free 29.4G
 metaslab 27 offset 6c000002000 size 3fffffe000 spacemap 147 free 17.7G
 metaslab 28 offset 70000008000 size 3fffff8000 spacemap 146 free 1.28G
 metaslab 29 offset 74000004000 size 3fffffc000 spacemap 148 free 1.05G
 metaslab 30 offset 78000000000 size 4000000000 spacemap 151 free 13.4G
 metaslab 31 offset 7c000006000 size 3fffffa000 spacemap 150 free 1.86G
 metaslab 32 offset 80000002000 size 3fffffe000 spacemap 149 free 1.42G
 metaslab 33 offset 84000008000 size 3fffff8000 spacemap 154 free 7.43G
 metaslab 34 offset 88000004000 size 3fffffc000 spacemap 153 free 21.1G
 metaslab 35 offset 8c000000000 size 4000000000 spacemap 152 free 1009M
 metaslab 36 offset 90000006000 size 3fffffa000 spacemap 156 free 15.9G
 metaslab 37 offset 94000002000 size 3fffffe000 spacemap 155 free 2.11G
 metaslab 38 offset 98000008000 size 3fffff8000 spacemap 157 free 1.59G
 metaslab 39 offset 9c000004000 size 3fffffc000 spacemap 160 free 43.9G
 metaslab 40 offset a0000000000 size 4000000000 spacemap 159 free 3.93G
 metaslab 41 offset a4000006000 size 3fffffa000 spacemap 158 free 1.10G
 metaslab 42 offset a8000002000 size 3fffffe000 spacemap 163 free 27.7G
 metaslab 43 offset ac000008000 size 3fffff8000 spacemap 162 free 2.59G
 metaslab 44 offset b0000004000 size 3fffffc000 spacemap 161 free 2.38G
 metaslab 45 offset b4000000000 size 4000000000 spacemap 165 free 33.6G
 metaslab 46 offset b8000006000 size 3fffffa000 spacemap 164 free 25.1G
 metaslab 47 offset bc000002000 size 3fffffe000 spacemap 166 free 1.25G
 metaslab 48 offset c0000008000 size 3fffff8000 spacemap 169 free 27.1G
 metaslab 49 offset c4000004000 size 3fffffc000 spacemap 168 free 2.46G
 metaslab 50 offset c8000000000 size 4000000000 spacemap 167 free 40.4G
 metaslab 51 offset cc000006000 size 3fffffa000 spacemap 171 free 49.5G
 metaslab 52 offset d0000002000 size 3fffffe000 spacemap 170 free 2.11G
 metaslab 53 offset d4000008000 size 3fffff8000 spacemap 172 free 1.05G
 metaslab 54 offset d8000004000 size 3fffffc000 spacemap 174 free 28.1G
 metaslab 55 offset dc000000000 size 4000000000 spacemap 173 free 1.34G
 metaslab 56 offset e0000006000 size 3fffffa000 spacemap 175 free 1.44G
 metaslab 57 offset e4000002000 size 3fffffe000 spacemap 178 free 27.5G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 74 of 96

 metaslab 58 offset e8000008000 size 3fffff8000 spacemap 177 free 2.59G
 metaslab 59 offset ec000004000 size 3fffffc000 spacemap 176 free 708M
 metaslab 60 offset f0000000000 size 4000000000 spacemap 181 free 22.6G
 metaslab 61 offset f4000006000 size 3fffffa000 spacemap 180 free 2.70G
 metaslab 62 offset f8000002000 size 3fffffe000 spacemap 179 free 1003M
 metaslab 63 offset fc000008000 size 3fffff8000 spacemap 184 free 25.2G
 metaslab 64 offset 100000004000 size 3fffffc000 spacemap 183 free 2.73G
 metaslab 65 offset 104000000000 size 4000000000 spacemap 182 free 647M
 metaslab 66 offset 108000006000 size 3fffffa000 spacemap 187 free 29.2G
 metaslab 67 offset 10c000002000 size 3fffffe000 spacemap 186 free 2.49G
 metaslab 68 offset 110000008000 size 3fffff8000 spacemap 185 free 45.8G
 metaslab 69 offset 114000004000 size 3fffffc000 spacemap 189 free 26.1G
 metaslab 70 offset 118000000000 size 4000000000 spacemap 188 free 1.97G
 metaslab 71 offset 11c000006000 size 3fffffa000 spacemap 190 free 1.07G
 metaslab 72 offset 120000002000 size 3fffffe000 spacemap 193 free 27.5G
 metaslab 73 offset 124000008000 size 3fffff8000 spacemap 192 free 2.74G
 metaslab 74 offset 128000004000 size 3fffffc000 spacemap 191 free 1.77G
 metaslab 75 offset 12c000000000 size 4000000000 spacemap 196 free 28.1G
 metaslab 76 offset 130000006000 size 3fffffa000 spacemap 195 free 40.2G
 metaslab 77 offset 134000002000 size 3fffffe000 spacemap 194 free 777M
 metaslab 78 offset 138000008000 size 3fffff8000 spacemap 198 free 26.7G
 metaslab 79 offset 13c000004000 size 3fffffc000 spacemap 197 free 1.78G
 metaslab 80 offset 140000000000 size 4000000000 spacemap 199 free 35.1G
 metaslab 81 offset 144000006000 size 3fffffa000 spacemap 201 free 27.9G
 metaslab 82 offset 148000002000 size 3fffffe000 spacemap 200 free 41.0G
 metaslab 83 offset 14c000008000 size 3fffff8000 spacemap 202 free 38.2G
 metaslab 84 offset 150000004000 size 3fffffc000 spacemap 203 free 17.9G
 metaslab 85 offset 154000000000 size 4000000000 spacemap 204 free 1.70G
 metaslab 86 offset 158000006000 size 3fffffa000 spacemap 205 free 1.84G
 metaslab 87 offset 15c000002000 size 3fffffe000 spacemap 208 free 27.3G
 metaslab 88 offset 160000008000 size 3fffff8000 spacemap 207 free 3.12G
 metaslab 89 offset 164000004000 size 3fffffc000 spacemap 206 free 1.51G
 metaslab 90 offset 168000000000 size 4000000000 spacemap 211 free 25.8G
 metaslab 91 offset 16c000006000 size 3fffffa000 spacemap 210 free 3.29G
 metaslab 92 offset 170000002000 size 3fffffe000 spacemap 209 free 2.14G
 metaslab 93 offset 174000008000 size 3fffff8000 spacemap 214 free 22.3G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 75 of 96

 metaslab 94 offset 178000004000 size 3fffffc000 spacemap 213 free 2.64G
 metaslab 95 offset 17c000000000 size 4000000000 spacemap 212 free 1.52G
 metaslab 96 offset 180000006000 size 3fffffa000 spacemap 217 free 22.4G
 metaslab 97 offset 184000002000 size 3fffffe000 spacemap 216 free 2.64G
 metaslab 98 offset 188000008000 size 3fffff8000 spacemap 215 free 1.79G
 metaslab 99 offset 18c000004000 size 3fffffc000 spacemap 220 free 26.5G
 metaslab 100 offset 190000000000 size 4000000000 spacemap 219 free 2.58G
 metaslab 101 offset 194000006000 size 3fffffa000 spacemap 218 free 1.72G
 metaslab 102 offset 198000002000 size 3fffffe000 spacemap 223 free 27.0G
 metaslab 103 offset 19c000008000 size 3fffff8000 spacemap 222 free 2.66G
 metaslab 104 offset 1a0000004000 size 3fffffc000 spacemap 221 free 1.24G
 metaslab 105 offset 1a4000000000 size 4000000000 spacemap 226 free 26.1G
 metaslab 106 offset 1a8000006000 size 3fffffa000 spacemap 225 free 2.84G
 metaslab 107 offset 1ac000002000 size 3fffffe000 spacemap 224 free 1.55G
 metaslab 108 offset 1b0000008000 size 3fffff8000 spacemap 229 free 44.5G
 metaslab 109 offset 1b4000004000 size 3fffffc000 spacemap 228 free 2.96G
 metaslab 110 offset 1b8000000000 size 4000000000 spacemap 227 free 1.53G
 metaslab 111 offset 1bc000006000 size 3fffffa000 spacemap 231 free 28.0G
 metaslab 112 offset 1c0000002000 size 3fffffe000 spacemap 230 free 2.73G
 metaslab 113 offset 1c4000008000 size 3fffff8000 spacemap 232 free 1.62G
 metaslab 114 offset 1c8000004000 size 3fffffc000 spacemap 235 free 46.8G
 metaslab 115 offset 1cc000000000 size 4000000000 spacemap 234 free 4.07G
 metaslab 116 offset 1d0000006000 size 3fffffa000 spacemap 233 free 1.59G
 metaslab 117 offset 1d4000002000 size 3fffffe000 spacemap 238 free 25.9G
 metaslab 118 offset 1d8000008000 size 3fffff8000 spacemap 237 free 2.92G
 metaslab 119 offset 1dc000004000 size 3fffffc000 spacemap 236 free 1.54G
 metaslab 120 offset 1e0000000000 size 4000000000 spacemap 241 free 28.7G
 metaslab 121 offset 1e4000006000 size 3fffffa000 spacemap 240 free 2.55G
 metaslab 122 offset 1e8000002000 size 3fffffe000 spacemap 239 free 1.38G
 metaslab 123 offset 1ec000008000 size 3fffff8000 spacemap 244 free 28.7G
 metaslab 124 offset 1f0000004000 size 3fffffc000 spacemap 243 free 4.02G
 metaslab 125 offset 1f4000000000 size 4000000000 spacemap 242 free 1.64G
 metaslab 126 offset 1f8000006000 size 3fffffa000 spacemap 247 free 28.9G
 metaslab 127 offset 1fc000002000 size 3fffffe000 spacemap 246 free 3.00G
 metaslab 128 offset 200000008000 size 3fffff8000 spacemap 245 free 2.16G
 metaslab 129 offset 204000004000 size 3fffffc000 spacemap 250 free 26.7G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 76 of 96

 metaslab 130 offset 208000000000 size 4000000000 spacemap 249 free 2.63G
 metaslab 131 offset 20c000006000 size 3fffffa000 spacemap 248 free 38.5G
 metaslab 132 offset 210000002000 size 3fffffe000 spacemap 252 free 17.1G
 metaslab 133 offset 214000008000 size 3fffff8000 spacemap 251 free 2.03G
 metaslab 134 offset 218000004000 size 3fffffc000 spacemap 253 free 2.19G
 metaslab 135 offset 21c000000000 size 4000000000 spacemap 255 free 43.2G
 metaslab 136 offset 220000006000 size 3fffffa000 spacemap 254 free 2.22G
 metaslab 137 offset 224000002000 size 3fffffe000 spacemap 256 free 1.58G
 metaslab 138 offset 228000008000 size 3fffff8000 spacemap 259 free 25.6G
 metaslab 139 offset 22c000004000 size 3fffffc000 spacemap 258 free 2.58G
 metaslab 140 offset 230000000000 size 4000000000 spacemap 257 free 35.2G
 metaslab 141 offset 234000006000 size 3fffffa000 spacemap 261 free 26.5G
 metaslab 142 offset 238000002000 size 3fffffe000 spacemap 260 free 1.74G
 metaslab 143 offset 23c000008000 size 3fffff8000 spacemap 262 free 1.92G
 metaslab 144 offset 240000004000 size 3fffffc000 spacemap 265 free 25.5G
 metaslab 145 offset 244000000000 size 4000000000 spacemap 264 free 3.25G
 metaslab 146 offset 248000006000 size 3fffffa000 spacemap 263 free 2.17G
 metaslab 147 offset 24c000002000 size 3fffffe000 spacemap 268 free 44.3G
 metaslab 148 offset 250000008000 size 3fffff8000 spacemap 267 free 3.64G
 metaslab 149 offset 254000004000 size 3fffffc000 spacemap 266 free 1.56G
 metaslab 150 offset 258000000000 size 4000000000 spacemap 271 free 27.5G
 metaslab 151 offset 25c000006000 size 3fffffa000 spacemap 270 free 2.11G
 metaslab 152 offset 260000002000 size 3fffffe000 spacemap 269 free 1.91G
 metaslab 153 offset 264000008000 size 3fffff8000 spacemap 274 free 26.9G
 metaslab 154 offset 268000004000 size 3fffffc000 spacemap 273 free 3.66G
 metaslab 155 offset 26c000000000 size 4000000000 spacemap 272 free 1.43G
 metaslab 156 offset 270000006000 size 3fffffa000 spacemap 277 free 25.6G
 metaslab 157 offset 274000002000 size 3fffffe000 spacemap 276 free 2.62G
 metaslab 158 offset 278000008000 size 3fffff8000 spacemap 275 free 1.89G
 metaslab 159 offset 27c000004000 size 3fffffc000 spacemap 280 free 27.4G
 metaslab 160 offset 280000000000 size 4000000000 spacemap 279 free 3.38G
 metaslab 161 offset 284000006000 size 3fffffa000 spacemap 278 free 1.39G
 metaslab 162 offset 288000002000 size 3fffffe000 spacemap 283 free 26.4G
 metaslab 163 offset 28c000008000 size 3fffff8000 spacemap 282 free 2.76G
 metaslab 164 offset 290000004000 size 3fffffc000 spacemap 281 free 1.72G
 metaslab 165 offset 294000000000 size 4000000000 spacemap 286 free 23.1G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 77 of 96

 metaslab 166 offset 298000006000 size 3fffffa000 spacemap 285 free 3.01G
 metaslab 167 offset 29c000002000 size 3fffffe000 spacemap 284 free 48.2G
 metaslab 168 offset 2a0000008000 size 3fffff8000 spacemap 288 free 26.0G
 metaslab 169 offset 2a4000004000 size 3fffffc000 spacemap 287 free 2.25G
 metaslab 170 offset 2a8000000000 size 4000000000 spacemap 289 free 38.5G
 metaslab 171 offset 2ac000006000 size 3fffffa000 spacemap 291 free 27.0G
 metaslab 172 offset 2b0000002000 size 3fffffe000 spacemap 290 free 40.5G
 metaslab 173 offset 2b4000008000 size 3fffff8000 spacemap 292 free 993M
 metaslab 174 offset 2b8000004000 size 3fffffc000 spacemap 294 free 18.7G
 metaslab 175 offset 2bc000000000 size 4000000000 spacemap 293 free 1.82G
 metaslab 176 offset 2c0000006000 size 3fffffa000 spacemap 295 free 1.64G
 metaslab 177 offset 2c4000002000 size 3fffffe000 spacemap 298 free 3.25G
 metaslab 178 offset 2c8000008000 size 3fffff8000 spacemap 297 free 2.57G
 metaslab 179 offset 2cc000004000 size 3fffffc000 spacemap 296 free 1.36G
 metaslab 180 offset 2d0000000000 size 4000000000 spacemap 301 free 6.21G
 metaslab 181 offset 2d4000006000 size 3fffffa000 spacemap 300 free 2.58G
 metaslab 182 offset 2d8000002000 size 3fffffe000 spacemap 299 free 1.73G
 metaslab 183 offset 2dc000008000 size 3fffff8000 spacemap 304 free 27.6G
 metaslab 184 offset 2e0000004000 size 3fffffc000 spacemap 303 free 2.64G
 metaslab 185 offset 2e4000000000 size 4000000000 spacemap 302 free 1.11G
 metaslab 186 offset 2e8000006000 size 3fffffa000 spacemap 307 free 6.57G
 metaslab 187 offset 2ec000002000 size 3fffffe000 spacemap 306 free 2.35G
 metaslab 188 offset 2f0000008000 size 3fffff8000 spacemap 305 free 1.52G
 metaslab 189 offset 2f4000004000 size 3fffffc000 spacemap 310 free 6.39G
 metaslab 190 offset 2f8000000000 size 4000000000 spacemap 309 free 2.17G
 metaslab 191 offset 2fc000006000 size 3fffffa000 spacemap 308 free 4.71G
 metaslab 192 offset 300000002000 size 3fffffe000 spacemap 313 free 4.68G
 metaslab 193 offset 304000008000 size 3fffff8000 spacemap 312 free 4.54G
 metaslab 194 offset 308000004000 size 3fffffc000 spacemap 311 free 1.39G
 metaslab 195 offset 30c000000000 size 4000000000 spacemap 316 free 3.55G
 metaslab 196 offset 310000006000 size 3fffffa000 spacemap 315 free 2.23G
 metaslab 197 offset 314000002000 size 3fffffe000 spacemap 314 free 1.38G
 metaslab 198 offset 318000008000 size 3fffff8000 spacemap 319 free 25.4G
 metaslab 199 offset 31c000004000 size 3fffffc000 spacemap 318 free 3.14G
 metaslab 200 offset 320000000000 size 4000000000 spacemap 317 free 39.3G
 metaslab 201 offset 324000006000 size 3fffffa000 spacemap 321 free 26.6G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 78 of 96

 metaslab 202 offset 328000002000 size 3fffffe000 spacemap 320 free 1.99G
 metaslab 203 offset 32c000008000 size 3fffff8000 spacemap 322 free 1.68G
 metaslab 204 offset 330000004000 size 3fffffc000 spacemap 325 free 28.8G
 metaslab 205 offset 334000000000 size 4000000000 spacemap 324 free 2.95G
 metaslab 206 offset 338000006000 size 3fffffa000 spacemap 323 free 1.78G
 metaslab 207 offset 33c000002000 size 3fffffe000 spacemap 328 free 24.4G
 metaslab 208 offset 340000008000 size 3fffff8000 spacemap 327 free 29.8G
 metaslab 209 offset 344000004000 size 3fffffc000 spacemap 326 free 8.55G
 metaslab 210 offset 348000000000 size 4000000000 spacemap 330 free 26.9G
 metaslab 211 offset 34c000006000 size 3fffffa000 spacemap 329 free 1.99G
 metaslab 212 offset 350000002000 size 3fffffe000 spacemap 331 free 1.83G
 metaslab 213 offset 354000008000 size 3fffff8000 spacemap 334 free 26.7G
 metaslab 214 offset 358000004000 size 3fffffc000 spacemap 333 free 2.35G
 metaslab 215 offset 35c000000000 size 4000000000 spacemap 332 free 2.82G
 metaslab 216 offset 360000006000 size 3fffffa000 spacemap 337 free 26.5G
 metaslab 217 offset 364000002000 size 3fffffe000 spacemap 336 free 8.60G
 metaslab 218 offset 368000008000 size 3fffff8000 spacemap 335 free 2.16G
 metaslab 219 offset 36c000004000 size 3fffffc000 spacemap 340 free 21.6G
 metaslab 220 offset 370000000000 size 4000000000 spacemap 339 free 7.50G
 metaslab 221 offset 374000006000 size 3fffffa000 spacemap 338 free 1.52G
 metaslab 222 offset 378000002000 size 3fffffe000 spacemap 343 free 42.7G
 metaslab 223 offset 37c000008000 size 3fffff8000 spacemap 342 free 3.92G
 metaslab 224 offset 380000004000 size 3fffffc000 spacemap 341 free 2.40G
 metaslab 225 offset 384000000000 size 4000000000 spacemap 345 free 26.4G
 metaslab 226 offset 388000006000 size 3fffffa000 spacemap 344 free 2.50G
 metaslab 227 offset 38c000002000 size 3fffffe000 spacemap 346 free 32.9G
 metaslab 228 offset 390000008000 size 3fffff8000 spacemap 348 free 44.8G
 metaslab 229 offset 394000004000 size 3fffffc000 spacemap 347 free 1.67G
 metaslab 230 offset 398000000000 size 4000000000 spacemap 349 free 2.25G
 metaslab 231 offset 39c000006000 size 3fffffa000 spacemap 352 free 27.8G
 metaslab 232 offset 3a0000002000 size 3fffffe000 spacemap 351 free 3.14G
 metaslab 233 offset 3a4000008000 size 3fffff8000 spacemap 350 free 2.73G
 metaslab 234 offset 3a8000004000 size 3fffffc000 spacemap 355 free 24.6G
 metaslab 235 offset 3ac000000000 size 4000000000 spacemap 354 free 4.52G
 metaslab 236 offset 3b0000006000 size 3fffffa000 spacemap 353 free 1.96G
 metaslab 237 offset 3b4000002000 size 3fffffe000 spacemap 358 free 34.8G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 79 of 96

 metaslab 238 offset 3b8000008000 size 3fffff8000 spacemap 357 free 2.18G
 metaslab 239 offset 3bc000004000 size 3fffffc000 spacemap 356 free 26.0G
 metaslab 240 offset 3c0000000000 size 4000000000 spacemap 359 free 1.15G
 metaslab 241 offset 3c4000006000 size 3fffffa000 spacemap 362 free 20.4G
 metaslab 242 offset 3c8000002000 size 3fffffe000 spacemap 361 free 2.05G
 metaslab 243 offset 3cc000008000 size 3fffff8000 spacemap 360 free 642M
 metaslab 244 offset 3d0000004000 size 3fffffc000 spacemap 365 free 15.7G
 metaslab 245 offset 3d4000000000 size 4000000000 spacemap 364 free 1.97G
 metaslab 246 offset 3d8000006000 size 3fffffa000 spacemap 363 free 1.09G
 metaslab 247 offset 3dc000002000 size 3fffffe000 spacemap 368 free 2.12G
 metaslab 248 offset 3e0000008000 size 3fffff8000 spacemap 367 free 1.25G
 metaslab 249 offset 3e4000004000 size 3fffffc000 spacemap 366 free 1.27G
 metaslab 250 offset 3e8000000000 size 4000000000 spacemap 371 free 737M
 metaslab 251 offset 3ec000006000 size 3fffffa000 spacemap 370 free 1.31G
 metaslab 252 offset 3f0000002000 size 3fffffe000 spacemap 369 free 1.43G
 metaslab 253 offset 3f4000008000 size 3fffff8000 spacemap 374 free 1.10G
 metaslab 254 offset 3f8000004000 size 3fffffc000 spacemap 373 free 1.12G
 metaslab 255 offset 3fc000000000 size 4000000000 spacemap 372 free 1.06G
 metaslab 256 offset 400000006000 size 3fffffa000 spacemap 377 free 829M
 metaslab 257 offset 404000002000 size 3fffffe000 spacemap 376 free 820M
 metaslab 258 offset 408000008000 size 3fffff8000 spacemap 375 free 774M
 metaslab 259 offset 40c000004000 size 3fffffc000 spacemap 380 free 1014M
 metaslab 260 offset 410000000000 size 4000000000 spacemap 379 free 648M
 metaslab 261 offset 414000006000 size 3fffffa000 spacemap 378 free 1.15G
 metaslab 262 offset 418000002000 size 3fffffe000 spacemap 383 free 1.04G
 metaslab 263 offset 41c000008000 size 3fffff8000 spacemap 382 free 1002M
 metaslab 264 offset 420000004000 size 3fffffc000 spacemap 381 free 955M
 metaslab 265 offset 424000000000 size 4000000000 spacemap 386 free 896M
 metaslab 266 offset 428000006000 size 3fffffa000 spacemap 385 free 986M
 metaslab 267 offset 42c000002000 size 3fffffe000 spacemap 384 free 1.15G
 metaslab 268 offset 430000008000 size 3fffff8000 spacemap 389 free 706M
 metaslab 269 offset 434000004000 size 3fffffc000 spacemap 388 free 1.10G
 metaslab 270 offset 438000000000 size 4000000000 spacemap 387 free 831M
 metaslab 271 offset 43c000006000 size 3fffffa000 spacemap 392 free 903M
 metaslab 272 offset 440000002000 size 3fffffe000 spacemap 391 free 777M
 metaslab 273 offset 444000008000 size 3fffff8000 spacemap 390 free 1.04G

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 80 of 96

 metaslab 274 offset 448000004000 size 3fffffc000 spacemap 393 free 794M
 metaslab 275 offset 44c000000000 size 4000000000 spacemap 394 free 695M
 metaslab 276 offset 450000006000 size 3fffffa000 spacemap 395 free 1.01G
 metaslab 277 offset 454000002000 size 3fffffe000 spacemap 398 free 899M
 metaslab 278 offset 458000008000 size 3fffff8000 spacemap 397 free 927M
 metaslab 279 offset 45c000004000 size 3fffffc000 spacemap 396 free 823M
 metaslab 280 offset 460000000000 size 4000000000 spacemap 401 free 821M
 metaslab 281 offset 464000006000 size 3fffffa000 spacemap 400 free 505M
 metaslab 282 offset 468000002000 size 3fffffe000 spacemap 399 free 926M
 metaslab 283 offset 46c000008000 size 3fffff8000 spacemap 404 free 960M
 metaslab 284 offset 470000004000 size 3fffffc000 spacemap 403 free 867M
 metaslab 285 offset 474000000000 size 4000000000 spacemap 402 free 509M
 metaslab 286 offset 478000006000 size 3fffffa000 spacemap 407 free 928M
 metaslab 287 offset 47c000002000 size 3fffffe000 spacemap 406 free 658M
 metaslab 288 offset 480000008000 size 3fffff8000 spacemap 405 free 931M
 metaslab 289 offset 484000004000 size 3fffffc000 spacemap 409 free 726M
 metaslab 290 offset 488000000000 size 4000000000 spacemap 408 free 583M

B.2 ‘zdb –m’ for a dRAID pool with segregation enabled

The following listing shows the status of the 43-drive hybrid dRAID described in section A.2.2. This dRAID was configured to use
metadata isolation with segregation enabled. The listing includes an extra column of that describes the class assignment for each
metaslab. The first 20% are reserved for the special class and will contain both metadata and small block categories. The normal
class will be used first for data larger than 32KB in size. When the special class metaslabs are consumed, small block I/O will spill
over into the normal class.
[root@ssu1_oss2]# zdb -m ssu_lost1
Metaslabs:
 vdev 0 segregate
 metaslabs 291 offset size spacemap free class
 --------------- ------------------- --------------- --------------- ------------ --------
 metaslab 0 offset 0 size 4000000000 spacemap 115 free 122G special
 metaslab 1 offset 4000000000 size 4000000000 spacemap 114 free 208G special

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 81 of 96

 metaslab 2 offset 8000001000 size 3ffffff000 spacemap 113 free 221G special
 metaslab 3 offset c000001000 size 3ffffff000 spacemap 4 free 256G special
 metaslab 4 offset 10000002000 size 3fffffe000 spacemap 3 free 256G special
 metaslab 5 offset 14000000000 size 4000000000 spacemap 2 free 256G special
 metaslab 6 offset 18000000000 size 4000000000 spacemap 7 free 256G special
 metaslab 7 offset 1c000001000 size 3ffffff000 spacemap 6 free 256G special
 metaslab 8 offset 20000001000 size 3ffffff000 spacemap 5 free 256G special
 metaslab 9 offset 24000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 10 offset 28000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 11 offset 2c000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 12 offset 30000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 13 offset 34000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 14 offset 38000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 15 offset 3c000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 16 offset 40000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 17 offset 44000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 18 offset 48000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 19 offset 4c000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 20 offset 50000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 21 offset 54000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 22 offset 58000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 23 offset 5c000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 24 offset 60000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 25 offset 64000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 26 offset 68000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 27 offset 6c000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 28 offset 70000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 29 offset 74000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 30 offset 78000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 31 offset 7c000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 32 offset 80000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 33 offset 84000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 34 offset 88000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 35 offset 8c000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 36 offset 90000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 37 offset 94000001000 size 3ffffff000 spacemap 0 free 256G ----

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 82 of 96

 metaslab 38 offset 98000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 39 offset 9c000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 40 offset a0000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 41 offset a4000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 42 offset a8000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 43 offset ac000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 44 offset b0000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 45 offset b4000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 46 offset b8000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 47 offset bc000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 48 offset c0000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 49 offset c4000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 50 offset c8000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 51 offset cc000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 52 offset d0000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 53 offset d4000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 54 offset d8000002000 size 3fffffe000 spacemap 0 free 256G ----
 metaslab 55 offset dc000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 56 offset e0000000000 size 4000000000 spacemap 0 free 256G ----
 metaslab 57 offset e4000001000 size 3ffffff000 spacemap 0 free 256G ----
 metaslab 58 offset e8000008000 size 3fffff8000 spacemap 123 free 7.70G normal
 metaslab 59 offset ec000004000 size 3fffffc000 spacemap 125 free 1.43G normal
 metaslab 60 offset f0000000000 size 4000000000 spacemap 124 free 1.58G normal
 metaslab 61 offset f4000006000 size 3fffffa000 spacemap 126 free 1.27G normal
 metaslab 62 offset f8000002000 size 3fffffe000 spacemap 127 free 1.66G normal
 metaslab 63 offset fc000008000 size 3fffff8000 spacemap 128 free 2.05G normal
 metaslab 64 offset 100000004000 size 3fffffc000 spacemap 129 free 2.23G normal
 metaslab 65 offset 104000000000 size 4000000000 spacemap 130 free 2.01G normal
 metaslab 66 offset 108000006000 size 3fffffa000 spacemap 131 free 1.59G normal
 metaslab 67 offset 10c000002000 size 3fffffe000 spacemap 132 free 1.08G normal
 metaslab 68 offset 110000008000 size 3fffff8000 spacemap 133 free 1.29G normal
 metaslab 69 offset 114000004000 size 3fffffc000 spacemap 134 free 1.59G normal
 metaslab 70 offset 118000000000 size 4000000000 spacemap 135 free 1.52G normal
 metaslab 71 offset 11c000006000 size 3fffffa000 spacemap 136 free 949M normal
 metaslab 72 offset 120000002000 size 3fffffe000 spacemap 137 free 1.59G normal
 metaslab 73 offset 124000008000 size 3fffff8000 spacemap 138 free 14.5G normal

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 83 of 96

 metaslab 74 offset 128000004000 size 3fffffc000 spacemap 139 free 1.85G normal
 metaslab 75 offset 12c000000000 size 4000000000 spacemap 141 free 24.1G normal
 metaslab 76 offset 130000006000 size 3fffffa000 spacemap 140 free 1.07G normal
 metaslab 77 offset 134000002000 size 3fffffe000 spacemap 142 free 19.9G normal
 metaslab 78 offset 138000008000 size 3fffff8000 spacemap 144 free 14.9G normal
 metaslab 79 offset 13c000004000 size 3fffffc000 spacemap 143 free 1.49G normal
 metaslab 80 offset 140000000000 size 4000000000 spacemap 145 free 22.2G normal
 metaslab 81 offset 144000006000 size 3fffffa000 spacemap 146 free 1.11G normal
 metaslab 82 offset 148000002000 size 3fffffe000 spacemap 147 free 1.34G normal
 metaslab 83 offset 14c000008000 size 3fffff8000 spacemap 148 free 36.2G normal
 metaslab 84 offset 150000004000 size 3fffffc000 spacemap 150 free 23.0G normal
 metaslab 85 offset 154000000000 size 4000000000 spacemap 149 free 946M normal
 metaslab 86 offset 158000006000 size 3fffffa000 spacemap 151 free 38.8G normal
 metaslab 87 offset 15c000002000 size 3fffffe000 spacemap 152 free 1.04G normal
 metaslab 88 offset 160000008000 size 3fffff8000 spacemap 153 free 25.3G normal
 metaslab 89 offset 164000004000 size 3fffffc000 spacemap 154 free 1.66G normal
 metaslab 90 offset 168000000000 size 4000000000 spacemap 155 free 34.4G normal
 metaslab 91 offset 16c000006000 size 3fffffa000 spacemap 156 free 1.51G normal
 metaslab 92 offset 170000002000 size 3fffffe000 spacemap 157 free 27.5G normal
 metaslab 93 offset 174000008000 size 3fffff8000 spacemap 159 free 23.8G normal
 metaslab 94 offset 178000004000 size 3fffffc000 spacemap 158 free 1.08G normal
 metaslab 95 offset 17c000000000 size 4000000000 spacemap 160 free 1.54G normal
 metaslab 96 offset 180000006000 size 3fffffa000 spacemap 161 free 1.46G normal
 metaslab 97 offset 184000002000 size 3fffffe000 spacemap 162 free 24.6G normal
 metaslab 98 offset 188000008000 size 3fffff8000 spacemap 163 free 1.07G normal
 metaslab 99 offset 18c000004000 size 3fffffc000 spacemap 165 free 43.3G normal
 metaslab 100 offset 190000000000 size 4000000000 spacemap 164 free 633M normal
 metaslab 101 offset 194000006000 size 3fffffa000 spacemap 166 free 1.27G normal
 metaslab 102 offset 198000002000 size 3fffffe000 spacemap 167 free 20.8G normal
 metaslab 103 offset 19c000008000 size 3fffff8000 spacemap 169 free 24.3G normal
 metaslab 104 offset 1a0000004000 size 3fffffc000 spacemap 168 free 11.4G normal
 metaslab 105 offset 1a4000000000 size 4000000000 spacemap 170 free 35.3G normal
 metaslab 106 offset 1a8000006000 size 3fffffa000 spacemap 171 free 1.45G normal
 metaslab 107 offset 1ac000002000 size 3fffffe000 spacemap 172 free 24.3G normal
 metaslab 108 offset 1b0000008000 size 3fffff8000 spacemap 174 free 36.1G normal
 metaslab 109 offset 1b4000004000 size 3fffffc000 spacemap 173 free 1.54G normal

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 84 of 96

 metaslab 110 offset 1b8000000000 size 4000000000 spacemap 175 free 28.0G normal
 metaslab 111 offset 1bc000006000 size 3fffffa000 spacemap 176 free 1.43G normal
 metaslab 112 offset 1c0000002000 size 3fffffe000 spacemap 177 free 35.6G normal
 metaslab 113 offset 1c4000008000 size 3fffff8000 spacemap 178 free 1.09G normal
 metaslab 114 offset 1c8000004000 size 3fffffc000 spacemap 179 free 1.43G normal
 metaslab 115 offset 1cc000000000 size 4000000000 spacemap 181 free 28.4G normal
 metaslab 116 offset 1d0000006000 size 3fffffa000 spacemap 180 free 1.21G normal
 metaslab 117 offset 1d4000002000 size 3fffffe000 spacemap 182 free 22.7G normal
 metaslab 118 offset 1d8000008000 size 3fffff8000 spacemap 184 free 45.0G normal
 metaslab 119 offset 1dc000004000 size 3fffffc000 spacemap 183 free 1.63G normal
 metaslab 120 offset 1e0000000000 size 4000000000 spacemap 185 free 19.0G normal
 metaslab 121 offset 1e4000006000 size 3fffffa000 spacemap 186 free 22.6G normal
 metaslab 122 offset 1e8000002000 size 3fffffe000 spacemap 188 free 29.7G normal
 metaslab 123 offset 1ec000008000 size 3fffff8000 spacemap 187 free 1.62G normal
 metaslab 124 offset 1f0000004000 size 3fffffc000 spacemap 189 free 26.4G normal
 metaslab 125 offset 1f4000000000 size 4000000000 spacemap 190 free 1.45G normal
 metaslab 126 offset 1f8000006000 size 3fffffa000 spacemap 191 free 25.4G normal
 metaslab 127 offset 1fc000002000 size 3fffffe000 spacemap 193 free 32.9G normal
 metaslab 128 offset 200000008000 size 3fffff8000 spacemap 192 free 1.02G normal
 metaslab 129 offset 204000004000 size 3fffffc000 spacemap 194 free 21.2G normal
 metaslab 130 offset 208000000000 size 4000000000 spacemap 195 free 17.8G normal
 metaslab 131 offset 20c000006000 size 3fffffa000 spacemap 196 free 22.8G normal
 metaslab 132 offset 210000002000 size 3fffffe000 spacemap 197 free 1.47G normal
 metaslab 133 offset 214000008000 size 3fffff8000 spacemap 198 free 1.22G normal
 metaslab 134 offset 218000004000 size 3fffffc000 spacemap 199 free 31.4G normal
 metaslab 135 offset 21c000000000 size 4000000000 spacemap 200 free 1.20G normal
 metaslab 136 offset 220000006000 size 3fffffa000 spacemap 201 free 24.0G normal
 metaslab 137 offset 224000002000 size 3fffffe000 spacemap 202 free 1.38G normal
 metaslab 138 offset 228000008000 size 3fffff8000 spacemap 203 free 22.8G normal
 metaslab 139 offset 22c000004000 size 3fffffc000 spacemap 204 free 1.40G normal
 metaslab 140 offset 230000000000 size 4000000000 spacemap 206 free 29.0G normal
 metaslab 141 offset 234000006000 size 3fffffa000 spacemap 205 free 1.60G normal
 metaslab 142 offset 238000002000 size 3fffffe000 spacemap 207 free 22.2G normal
 metaslab 143 offset 23c000008000 size 3fffff8000 spacemap 209 free 20.7G normal
 metaslab 144 offset 240000004000 size 3fffffc000 spacemap 208 free 1.22G normal
 metaslab 145 offset 244000000000 size 4000000000 spacemap 210 free 30.2G normal

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 85 of 96

 metaslab 146 offset 248000006000 size 3fffffa000 spacemap 211 free 1.32G normal
 metaslab 147 offset 24c000002000 size 3fffffe000 spacemap 212 free 20.4G normal
 metaslab 148 offset 250000008000 size 3fffff8000 spacemap 213 free 1.32G normal
 metaslab 149 offset 254000004000 size 3fffffc000 spacemap 214 free 15.6G normal
 metaslab 150 offset 258000000000 size 4000000000 spacemap 215 free 1.01G normal
 metaslab 151 offset 25c000006000 size 3fffffa000 spacemap 216 free 34.1G normal
 metaslab 152 offset 260000002000 size 3fffffe000 spacemap 218 free 18.7G normal
 metaslab 153 offset 264000008000 size 3fffff8000 spacemap 217 free 1.21G normal
 metaslab 154 offset 268000004000 size 3fffffc000 spacemap 219 free 36.5G normal
 metaslab 155 offset 26c000000000 size 4000000000 spacemap 220 free 1.44G normal
 metaslab 156 offset 270000006000 size 3fffffa000 spacemap 221 free 33.3G normal
 metaslab 157 offset 274000002000 size 3fffffe000 spacemap 222 free 1.17G normal
 metaslab 158 offset 278000008000 size 3fffff8000 spacemap 223 free 1.58G normal
 metaslab 159 offset 27c000004000 size 3fffffc000 spacemap 224 free 1.33G normal
 metaslab 160 offset 280000000000 size 4000000000 spacemap 225 free 21.4G normal
 metaslab 161 offset 284000006000 size 3fffffa000 spacemap 227 free 24.5G normal
 metaslab 162 offset 288000002000 size 3fffffe000 spacemap 226 free 1.50G normal
 metaslab 163 offset 28c000008000 size 3fffff8000 spacemap 228 free 19.1G normal
 metaslab 164 offset 290000004000 size 3fffffc000 spacemap 229 free 1.33G normal
 metaslab 165 offset 294000000000 size 4000000000 spacemap 230 free 32.4G normal
 metaslab 166 offset 298000006000 size 3fffffa000 spacemap 231 free 907M normal
 metaslab 167 offset 29c000002000 size 3fffffe000 spacemap 232 free 17.1G normal
 metaslab 168 offset 2a0000008000 size 3fffff8000 spacemap 234 free 29.6G normal
 metaslab 169 offset 2a4000004000 size 3fffffc000 spacemap 233 free 1.46G normal
 metaslab 170 offset 2a8000000000 size 4000000000 spacemap 235 free 16.2G normal
 metaslab 171 offset 2ac000006000 size 3fffffa000 spacemap 236 free 1.36G normal
 metaslab 172 offset 2b0000002000 size 3fffffe000 spacemap 237 free 1.07G normal
 metaslab 173 offset 2b4000008000 size 3fffff8000 spacemap 238 free 895M normal
 metaslab 174 offset 2b8000004000 size 3fffffc000 spacemap 239 free 15.6G normal
 metaslab 175 offset 2bc000000000 size 4000000000 spacemap 241 free 17.4G normal
 metaslab 176 offset 2c0000006000 size 3fffffa000 spacemap 240 free 1.03G normal
 metaslab 177 offset 2c4000002000 size 3fffffe000 spacemap 242 free 17.7G normal
 metaslab 178 offset 2c8000008000 size 3fffff8000 spacemap 243 free 1.29G normal
 metaslab 179 offset 2cc000004000 size 3fffffc000 spacemap 244 free 22.8G normal
 metaslab 180 offset 2d0000000000 size 4000000000 spacemap 246 free 18.4G normal
 metaslab 181 offset 2d4000006000 size 3fffffa000 spacemap 245 free 950M normal

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 86 of 96

 metaslab 182 offset 2d8000002000 size 3fffffe000 spacemap 247 free 932M normal
 metaslab 183 offset 2dc000008000 size 3fffff8000 spacemap 248 free 987M normal
 metaslab 184 offset 2e0000004000 size 3fffffc000 spacemap 249 free 14.2G normal
 metaslab 185 offset 2e4000000000 size 4000000000 spacemap 250 free 1.09G normal
 metaslab 186 offset 2e8000006000 size 3fffffa000 spacemap 251 free 582M normal
 metaslab 187 offset 2ec000002000 size 3fffffe000 spacemap 252 free 16.0G normal
 metaslab 188 offset 2f0000008000 size 3fffff8000 spacemap 254 free 13.0G normal
 metaslab 189 offset 2f4000004000 size 3fffffc000 spacemap 253 free 1.40G normal
 metaslab 190 offset 2f8000000000 size 4000000000 spacemap 255 free 15.6G normal
 metaslab 191 offset 2fc000006000 size 3fffffa000 spacemap 256 free 10.9G normal
 metaslab 192 offset 300000002000 size 3fffffe000 spacemap 257 free 32.9G normal
 metaslab 193 offset 304000008000 size 3fffff8000 spacemap 258 free 1.12G normal
 metaslab 194 offset 308000004000 size 3fffffc000 spacemap 259 free 16.6G normal
 metaslab 195 offset 30c000000000 size 4000000000 spacemap 260 free 1.34G normal
 metaslab 196 offset 310000006000 size 3fffffa000 spacemap 261 free 28.0G normal
 metaslab 197 offset 314000002000 size 3fffffe000 spacemap 262 free 892M normal
 metaslab 198 offset 318000008000 size 3fffff8000 spacemap 263 free 17.8G normal
 metaslab 199 offset 31c000004000 size 3fffffc000 spacemap 265 free 16.7G normal
 metaslab 200 offset 320000000000 size 4000000000 spacemap 264 free 1.25G normal
 metaslab 201 offset 324000006000 size 3fffffa000 spacemap 266 free 30.3G normal
 metaslab 202 offset 328000002000 size 3fffffe000 spacemap 267 free 1.26G normal
 metaslab 203 offset 32c000008000 size 3fffff8000 spacemap 268 free 29.4G normal
 metaslab 204 offset 330000004000 size 3fffffc000 spacemap 269 free 1.26G normal
 metaslab 205 offset 334000000000 size 4000000000 spacemap 270 free 757M normal
 metaslab 206 offset 338000006000 size 3fffffa000 spacemap 271 free 1.59G normal
 metaslab 207 offset 33c000002000 size 3fffffe000 spacemap 272 free 571M normal
 metaslab 208 offset 340000008000 size 3fffff8000 spacemap 273 free 1.37G normal
 metaslab 209 offset 344000004000 size 3fffffc000 spacemap 274 free 27.6G normal
 metaslab 210 offset 348000000000 size 4000000000 spacemap 275 free 717M normal
 metaslab 211 offset 34c000006000 size 3fffffa000 spacemap 276 free 24.7G normal
 metaslab 212 offset 350000002000 size 3fffffe000 spacemap 278 free 33.1G normal
 metaslab 213 offset 354000008000 size 3fffff8000 spacemap 277 free 1.32G normal
 metaslab 214 offset 358000004000 size 3fffffc000 spacemap 279 free 25.6G normal
 metaslab 215 offset 35c000000000 size 4000000000 spacemap 280 free 1.29G normal
 metaslab 216 offset 360000006000 size 3fffffa000 spacemap 281 free 1.38G normal
 metaslab 217 offset 364000002000 size 3fffffe000 spacemap 282 free 1.23G normal

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 87 of 96

 metaslab 218 offset 368000008000 size 3fffff8000 spacemap 283 free 22.7G normal
 metaslab 219 offset 36c000004000 size 3fffffc000 spacemap 284 free 1.33G normal
 metaslab 220 offset 370000000000 size 4000000000 spacemap 285 free 670M normal
 metaslab 221 offset 374000006000 size 3fffffa000 spacemap 287 free 37.0G normal
 metaslab 222 offset 378000002000 size 3fffffe000 spacemap 286 free 22.8G normal
 metaslab 223 offset 37c000008000 size 3fffff8000 spacemap 288 free 15.6G normal
 metaslab 224 offset 380000004000 size 3fffffc000 spacemap 289 free 22.5G normal
 metaslab 225 offset 384000000000 size 4000000000 spacemap 290 free 22.9G normal
 metaslab 226 offset 388000006000 size 3fffffa000 spacemap 291 free 15.2G normal
 metaslab 227 offset 38c000002000 size 3fffffe000 spacemap 292 free 22.3G normal
 metaslab 228 offset 390000008000 size 3fffff8000 spacemap 293 free 1.07G normal
 metaslab 229 offset 394000004000 size 3fffffc000 spacemap 294 free 948M normal
 metaslab 230 offset 398000000000 size 4000000000 spacemap 295 free 901M normal
 metaslab 231 offset 39c000006000 size 3fffffa000 spacemap 296 free 815M normal
 metaslab 232 offset 3a0000002000 size 3fffffe000 spacemap 297 free 1.33G normal
 metaslab 233 offset 3a4000008000 size 3fffff8000 spacemap 298 free 1.15G normal
 metaslab 234 offset 3a8000004000 size 3fffffc000 spacemap 299 free 1.08G normal
 metaslab 235 offset 3ac000000000 size 4000000000 spacemap 300 free 442M normal
 metaslab 236 offset 3b0000006000 size 3fffffa000 spacemap 301 free 712M normal
 metaslab 237 offset 3b4000002000 size 3fffffe000 spacemap 302 free 994M normal
 metaslab 238 offset 3b8000008000 size 3fffff8000 spacemap 303 free 1.17G normal
 metaslab 239 offset 3bc000004000 size 3fffffc000 spacemap 304 free 1.14G normal
 metaslab 240 offset 3c0000000000 size 4000000000 spacemap 305 free 285M normal
 metaslab 241 offset 3c4000006000 size 3fffffa000 spacemap 306 free 947M normal
 metaslab 242 offset 3c8000002000 size 3fffffe000 spacemap 307 free 1.34G normal
 metaslab 243 offset 3cc000008000 size 3fffff8000 spacemap 308 free 490M normal
 metaslab 244 offset 3d0000004000 size 3fffffc000 spacemap 309 free 23.0G normal
 metaslab 245 offset 3d4000000000 size 4000000000 spacemap 310 free 1.47G normal
 metaslab 246 offset 3d8000006000 size 3fffffa000 spacemap 311 free 21.5G normal
 metaslab 247 offset 3dc000002000 size 3fffffe000 spacemap 312 free 726M normal
 metaslab 248 offset 3e0000008000 size 3fffff8000 spacemap 313 free 1.24G normal
 metaslab 249 offset 3e4000004000 size 3fffffc000 spacemap 314 free 20.9G normal
 metaslab 250 offset 3e8000000000 size 4000000000 spacemap 316 free 946M normal
 metaslab 251 offset 3ec000006000 size 3fffffa000 spacemap 315 free 26.0G normal
 metaslab 252 offset 3f0000002000 size 3fffffe000 spacemap 317 free 677M normal
 metaslab 253 offset 3f4000008000 size 3fffff8000 spacemap 318 free 1.37G normal

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 88 of 96

 metaslab 254 offset 3f8000004000 size 3fffffc000 spacemap 319 free 1.28G normal
 metaslab 255 offset 3fc000000000 size 4000000000 spacemap 320 free 14.0G normal
 metaslab 256 offset 400000006000 size 3fffffa000 spacemap 322 free 874M normal
 metaslab 257 offset 404000002000 size 3fffffe000 spacemap 321 free 22.3G normal
 metaslab 258 offset 408000008000 size 3fffff8000 spacemap 323 free 1.06G normal
 metaslab 259 offset 40c000004000 size 3fffffc000 spacemap 324 free 1.00G normal
 metaslab 260 offset 410000000000 size 4000000000 spacemap 326 free 23.0G normal
 metaslab 261 offset 414000006000 size 3fffffa000 spacemap 325 free 670M normal
 metaslab 262 offset 418000002000 size 3fffffe000 spacemap 327 free 506M normal
 metaslab 263 offset 41c000008000 size 3fffff8000 spacemap 328 free 1.25G normal
 metaslab 264 offset 420000004000 size 3fffffc000 spacemap 329 free 948M normal
 metaslab 265 offset 424000000000 size 4000000000 spacemap 330 free 17.1G normal
 metaslab 266 offset 428000006000 size 3fffffa000 spacemap 331 free 887M normal
 metaslab 267 offset 42c000002000 size 3fffffe000 spacemap 332 free 846M normal
 metaslab 268 offset 430000008000 size 3fffff8000 spacemap 333 free 1.06G normal
 metaslab 269 offset 434000004000 size 3fffffc000 spacemap 334 free 1.28G normal
 metaslab 270 offset 438000000000 size 4000000000 spacemap 335 free 793M normal
 metaslab 271 offset 43c000006000 size 3fffffa000 spacemap 336 free 23.5G normal
 metaslab 272 offset 440000002000 size 3fffffe000 spacemap 337 free 20.3G normal
 metaslab 273 offset 444000008000 size 3fffff8000 spacemap 338 free 1.06G normal
 metaslab 274 offset 448000004000 size 3fffffc000 spacemap 339 free 840M normal
 metaslab 275 offset 44c000000000 size 4000000000 spacemap 340 free 20.4G normal
 metaslab 276 offset 450000006000 size 3fffffa000 spacemap 341 free 1000M normal
 metaslab 277 offset 454000002000 size 3fffffe000 spacemap 342 free 1.04G normal
 metaslab 278 offset 458000008000 size 3fffff8000 spacemap 343 free 17.7G normal
 metaslab 279 offset 45c000004000 size 3fffffc000 spacemap 344 free 1.23G normal
 metaslab 280 offset 460000000000 size 4000000000 spacemap 345 free 905M normal
 metaslab 281 offset 464000006000 size 3fffffa000 spacemap 346 free 22.1G normal
 metaslab 282 offset 468000002000 size 3fffffe000 spacemap 347 free 19.7G normal
 metaslab 283 offset 46c000008000 size 3fffff8000 spacemap 348 free 1.15G normal
 metaslab 284 offset 470000004000 size 3fffffc000 spacemap 349 free 12.7G normal
 metaslab 285 offset 474000000000 size 4000000000 spacemap 350 free 21.9G normal
 metaslab 286 offset 478000006000 size 3fffffa000 spacemap 351 free 19.0G normal
 metaslab 287 offset 47c000002000 size 3fffffe000 spacemap 352 free 1.16G normal
 metaslab 288 offset 480000008000 size 3fffff8000 spacemap 353 free 912M normal
 metaslab 289 offset 484000004000 size 3fffffc000 spacemap 354 free 902M normal

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 89 of 96

 metaslab 290 offset 488000000000 size 4000000000 spacemap 355 free 1.35G normal

B.3 draidcfg output for the 80 drive demonstration (80.nvl)
The following is the complete listing of the base permuation table created for the dRAID configuration shown in the demonstration
of arbitrary pool configuration (section A.1.1). Each line represents the random ordering for the permutation of the 80 drives in the
array.
draidcfg -r 80.nvl
dRAID3 vdev of 80 child drives: 7 x (8 data + 3 parity) and 3 distributed spare
Using 64 base permutations
 23,54,38,76,61,14,34,48, 9,31,52,10, 3,41,46,70, 1, 6,59,47,28,32,29,49,30,22,27,11,44,20,56, 5,74,

8,50,15,62,66,33,67,16,65,36,71,75,18,68,21,69,26,64,60,55,42,43,63,35,37,24, 7,17,45, 0, 2,58,78,57,13,12,72,73,
4,19,25,51,79,39,53,77,40,

 41,54,75,48, 2,57,36, 8,76,44, 5, 3,22,30,61,69,47,28,13, 0, 6,71,34,55,33,46,70,79,66,45,27,74,18,25,60,72,11,50,68,
1,53,32,19,64,40,51, 4,31,17,62,42,39,26,56, 7,16,24,12,38,15,78,35,37,67, 9,23,20,49,10,43,14,59,77,29,63,73,58,52,21,65,

 14,65,43, 9,16,53,46,69,17,40,20, 3,47,70,28,39,54, 5,12,24,78, 2,49,61,11,51,75,79,41,50,73,34,18,21,25,52,44,22,32,77, 8,59,15,
7,74,66, 0,71,45,56, 4,36,58,23,68, 6,67,42,29,64,26,33,72,10,37,13, 1,76,60,38,48,31,63,27,35,62,55,19,30,57,

 2,56,48,51,68,15,75,41,58,35,50,14,36,16,63,77,30,69,11,10,26, 7,62,19,24,44,28,37,31,43,64,25,49,32,54,53, 9,76,39,57,33,74,
8,34,27,23, 3,40,72,59,67,55,65,47,66, 1,71,61,46,18,17,29,79,38,12,70,22,45,78,60, 5, 6,21,73,13, 0,42,20, 4,52,

 64,76,20, 7,34,21,63,13, 0,47,51,41,59,57,74, 6,25,71,54,33,35,46,19,15,43, 8,23,18,24,61,10,39,72,27,26, 9,62,17,53,78,
2,58,29,60,77,44,36,66,70,22,67,75,65,69,30, 4,40,14,42,45,38,49,32,11,31,16,28,79, 3,68,56,73, 1,48, 5,52,12,55,50,37,

 62,33,67,58,38,57,61,24, 3,47, 0,37,53,72,40,39,35,10,20,60,43,41,69,55,23,21,59,25,13,28, 9,12,51,19,52,27,63,45, 2,31,46,15, 5,
7,14,68, 1,76,78,50,29,26, 6,42,22,56,11,64,16, 4,49,79,73,74,54,36, 8,77,65,17,75,66,44,71,70,32,34,18,48,30,

 10,57,30,46,42,55,34,16,52,49,44,36,53,18,79,21,38,77,60,39,45, 8,19,24,68,17,73,63,66,70,65, 7, 4,37,61, 6,64,12,
9,26,28,14,78,31,41,27,11,33,51, 3,29,35,74,32,23,58,76,13, 0,22,15,69,47, 1,56, 5,72,67,54,50,43,48,59,25, 2,75,62,40,71,20,

 59,53,27,26,72,23,33,56,66,10,73,52,51, 8,24,18,11,68, 6,77,45,19,37, 2, 4,76,47,17,34,62,49, 0,50,28,74,22,21,15,78,
7,25,20,40,32,35,38,31,71,57,65,12,16,13,48,43, 1,54,58,36, 9,63,64,79, 5,42,44,75,14,39,55,60,29,30,46,61,70,41,69,67, 3,

 40,14,16,31, 5,63,69,53,43,37,73,50,77,20,29,61,41,48,45,67,15,55,47,79,60,25,76,54,12,57,46,56,35, 1, 7,65,22,11,34,26,13, 70,
27,72, 2,74,19, 8,28,23,66,62,71,33,64,18,17, 3, 0,49, 6,36,75,59,78,30,32,58,52,24, 4,21,10,68,39,51, 9,38,44,42,

 53,55,59,77,64,39,40,62,76,16,74, 5,26,23,66,47,21, 0, 6,60,69,27,11,58,72,34,73,45,38, 3,43,49,15, 9,19, 1,79,35,67,31,44,75,
46,68,50,71, 2, 8,48,65,54,14,78,63,41,13,10,29,12,32,20,57,30,25,24,51,36,18,56,33, 4,70,37,61,17,28,52,42, 7,22,

 47,54,51, 3,49,45,32,71,68,26,31,65,30, 8,74, 9,76,78,46,25,38,53,60,19,11,50, 6,33,58,37,39, 7,20, 2, 0, 5,75,28, 63,48,44,
40,34,41,17,15,67,16,66,13,22,72,73,21,35,36,77,12,70, 1, 4,10,69,23,52,43,79,56,59,27,62,57,55, 14,64,24,18,42,29,61,

 33,65,36,19,47,41,53, 9,26,17,66, 1, 5,77,69,59, 6,27, 7,14,71,68,12,25,28,10,13,18,61,51,22,54,34,31,48,57,32,67,49,62,
8,23,40,58,39,79,50,74,45,44,73,64,30, 0, 2,56,75,21,29,43,63,76,72,60,46, 4,42,20,70,16, 3,11,52,55,38,78,37,24,15,35,

 75,79,64,78,22,61,28, 2,50,51,21, 5,46,72,16,15,70, 3,49,32,36,26,60,27, 0,24,52,56, 7,43,12,73,42,30,45,17,48,10,33,74,37,35,44,
71,29,68,53,23,13,59,38,34,19,18, 8,62,65,66,39,76,20,55,77,58,25,40,41,11,31,47,57, 9,14, 4,67, 1,54,69,63, 6,

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 90 of 96

 12,76,64,36,37,28,44,57,49,13,39,73,58, 5,27,52,33,15,26,56,51,66,14,63,23,71,43,62,65,11,35,74,16,18, 0, 7, 1,
6,34,60,47,46,29,20,79, 3,10,53,42,78,68,31,21,50,54,70, 4,61,55,38,30,59,69, 8,32,77, 9,22,41,24,48,75,19,17,25,67, 2,40,45,72,

 19, 2,64, 8,37,58,25,70,33,23,28,68,52,69,34,30,27,50, 7,56,62,47,51,57,45,61,65,67,31,75,79,43,42,13,29,53,66,72,77,35,26,
5,48,15,38,10, 1,59,14,16,11,40, 3,20,76,63,49,74,41,39, 0,55,46,54,78,12, 4,22,71, 9,21,36,44,60,18,73,17,32,24, 6,

 73,55,35,71,46,40,26,32,29,23,13,15,30, 0,72,68,22,64,25, 1,56,76,43,36,44, 8,27,39,18,63,41, 9,19,11,58,28,50,24, 2,77,
7,53,34,66,49,65,78,67,59,69,57,48,70,79,33, 5,61,60,51,62, 3,14,75,16,17, 4,52,74,10,20,45,12,47,37,54,31, 6,38,21,42,

 0,43,38,78,21,73,18,16, 3,79,70,24,47,74,12,67,63,30,41, 6,34,27,76,72,25,65, 9,37,55,39,31, 4,71, 8,10,58,44,11,35,36,23,46,
48,53,52,69,32,20,59,66,26,14,62,61,57,50,15,13,17,29,60,56,68,33, 5,75,54,51,28,42,45, 2,40,22,49, 7,19, 1,77,64,

 74,19,37,28,34,69,59,31,78,13,61,65,54,40,75,73,70,38,22, 6,63,10,27,48, 4,46,14,21,41, 3,15,20,76,26,77,62,60,
8,66,45,23,55,29,50,67,11,52,25, 5, 2,36, 0,30,51,33,49,43,44,53,39,32, 1,79,71,72,12,47,58, 9,24,42,16,57,35,56, 7,68,17,18,64,

 65,10, 5,51,26, 4,68,22, 7,23,55, 1,21,34,61,75,20,76, 9,74,62,48,54,73,35,13,58, 8,44,53,33,38,42,60,64,17,36,15,32,29,67,66,
41,52,63,31,47,79, 3, 0,24,49,78,72,18,12,14,46,37,11,77,39,56,30,59,69, 2,25, 6,16,71,28,50,45,57,19,27,40,43,70,

 14,79,16,51, 9,50,41,15, 2, 8,32,75,21,43,11,26,65,36,27,47,38,17,67, 3,71,45,60,42, 1,54,22, 4,20, 6,40,76,74,56,12,61,28,
0,25,78,55,23,18,44, 5,73,52,29,77,57,34,24,58,19, 7,46,37,69,35,62,66,13,53,59,70,64,39,63,48,33,10,31,68,49,72,30,

 30,52, 4,58,14,78,62, 5,76,29,36,28,63,64,74,56, 3,32,39,33,18,48,65,10,68,50,66, 0,16,57,26, 9,60,37,23,17,34,25,67,69,
8,79,77,53,15,73,44,71,12,59, 1,51, 2,11,35, 6,47,22,46,75,38,55,49, 7,61,54,19,41,13,40,27,31,42,70,72,20,21,43,45,24,

 20,21,44, 0,30,28,46, 6, 7,40,13,76,72,37,53, 8,61,57,18,35,12,78,31,17,29,79,70, 2,26,77,50,25,41,23,47, 1,34,16,69,68,10,
3,74,59,14,55,54,60,27,49, 9,39,73,65,42,67,15,33,56,58,11,64,22,24,43, 4,36,66,38,62,51,48, 5,32,63,52,45,75,71,19,

 11,31,79,26,14, 9,27,62, 1,39,29,54, 6, 5,41,28,22,65, 7,34,57,77,59,73,42,32,46,25,38,63,74,47,17,60,72,67,33,64,53,40,
66,12,48,15,71,56,23, 3,76,44,30, 4,16,49,37,24,55,52,58,61,51,70,35,43,18,69,13,75, 2, 8,36,45,19,50, 0,10,68,78,20,21,

 66,31,41,34,44,77,79,75,33,18,22,16,27,19,40,17,57, 8, 0,26,50,28,15,37,29,49,24, 6, 9,13,53,60,73,71,25,52,78,10,58,65,11, 3,62,
1, 4,38,70,43, 5,12,20,61,63,47,23,55, 7,74,35,76,48,68,67,59,30,42,72,46,39,54,69,51,36,56,64,45,32,21,14, 2,

 15,41, 7,18,34,77,36, 0,45,66,22,59,56,42,48, 8,31,61,43,30,70,13,52,60,49,75,46,53,14,64,28,16, 3,58, 2,35,26,67,72,44,79,
29,51,74, 1, 5,55, 4,17,71,73,65,27,54,38,78,23,76,68,47,32,19,40,69,21,24,39,33,37,62,10,11, 9,20,63,25,50,12,57, 6,

 74,76,51, 8,19,78,32,46, 9,63,67,49,75,26,16, 6,66,25,30,53,56,37,77,22, 1,17,45,65,59,12,68,31,55,27,23,34,44,14,11,48,54,18,36,
64, 0,70, 3,21,39, 4,62,79,20,40,57,15,35,60,38,61,10,69,41,43,24,50,73,47,33, 7,71,13,72,42,58,28, 2,52, 5,29,

 4,39,24,66,41,72,29,25, 2,55, 6,43,44,52,45,75,19, 7,22,11,20,16,63,49,59,60,26,35,54,70,64, 3,56,42,58,71,48,57,51,77,18,76,61,
9,62,36,53,38,79, 1,50,74,47,15,14,34, 8,78,40,10,73,13,12,30,28, 5,33,17,27,37, 0,65,67,23,46,31,21,69,32,68,

 27,46,61,37,41, 9,74, 7,79,73,67, 3,25,45,33,10,59,49,52,77,78,43,53, 4, 0,17,35,21,14,60,44,54,32,24,63,42,72,39,62,36,
40,64,66,34,75, 6,30,69,38, 5,51,47,28,22,18,57,31,71,15,23,68,20,12, 1,56,76, 8,26,55, 2,70,29,13,65,48,58,11,16,50,19,

 18,13, 9,72,41,35,20,11,10,70,43,37,67,73,56,33,52,46,29,30,45,61, 1, 4, 7,16,55,23,40,66,36,48,71,63,34,28,64,12,79,
8,14,75,50,26,60,74,44,69,59,15, 3, 2,21,65,27,22,76,77,53,51,32,31,19,62, 0,58,25, 6,42,49,17,54, 5,24,78,68,57,38,39,47,

 33,63,57,10,18,21, 7,41,34,71,51,68,70,52, 0, 4,13,62,69,30,15,14,67,35,29, 1,78,54, 5,24,64, 3,60,65,20,48,50,45,31,17,79,39,38,
28,11,36,49,12,72,66,77,44, 6,40,59,61,53,22,37,16,43,19, 9,55,46,74,73,26, 8,23,75, 2,32,27,58,47,56,25,42,76,

 72,69,52, 4,59,22,14, 3,70,26,61,36,63,29,53,79,49,15,62,33, 9,66, 0,16,44,45,58,41,43,24,71,27,23,67,21,25,32,46,39,55,
64,50,35,57,60,13,19,11, 1,12,37, 5,56,10,20,75,30,68, 6,28,47,65,34,40, 8,76,78,48,77, 7, 2,74,51,73,38,17,42,31,54,18,

 15,20,40, 9,61,45,32,63,28,64,37,34, 4, 3,65,27,25,66,30, 5,24,29,70,26,59,22,77,54,78,11,19,60,33, 8,55,10,31,46,13,16,69,
51,73,44,39,53, 1,17,72,48,57,74,56,43,36, 2,76,68,38,14,79,52, 0,21,12,49,18,50,41, 6,42, 7,62,71,75,47,58,35,67,23,

 43,40, 9,64,62,17, 3,72,22,52,20,63,29,37, 1,74,79,76,57,59,77, 2,33,25,58,12,75,47,31,26, 8,38,27,45,55, 6,19,67,69,48,61,23,32,
5,15,66,14,30,36, 7,24,34,71,42,73,49, 0,39,51,70,78, 4,41,56,28,50,21,18,35,10,68,60,44,53,46,11,16,13,65,54,

 57,34,72,75,79, 8,53,60,43,64,41,35,25,16,24,70, 5, 4,76,46,44,74,45,32, 1,49,39,37,19,21,65,68,78,27,47, 2,22,11, 0,20,13,12,18,
3,66,42,36,62,17,54,29,71,26,56, 6,40,38,50,61,73,77,59,67,63,23,10,15,14,28,33,69,55, 9,48,58,30,51,31,52, 7,

 48,30,19,59,52,26, 2,37,22,13,40,42, 4,72,63,28,71,56,21,73,79,15,50,20,64,58,70,47,53,65,27, 7,25,76, 5,61,45,67, 9,
0,18,60,31,29,14, 6,17, 3,57,68,24,43,34,66,49,33,36,55,35,69,46,62,16,39,78, 1,32,75,51,11,12,10,77,23,54, 8,74,44,38,41,

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 91 of 96

 29, 3,54,68,16, 1,55,32,69,67,19,75,37,46,71,33,62,30,57,27,58,53,42,52,38,28,56,73,63,24,25,39, 8,79,18, 2,34,36,10,12,
15,11,50,49,51,22,14,70,66,23,31,44,61,74,17,76, 7,77,48,43, 5, 4,65,35,78, 9,13, 6,45,26,40,41,64,47,20,72,21,59, 0,60,

 19,44,49,56, 5,14,40,63,66, 0,11,51,25,13,78, 3,74,20, 6,70,64,65, 9,23,37,67,36,38, 8,59,60,18,21, 2,42,35,53,43,75,62,
39,33,12,79,73,68,32,30,16, 7,57,31,41,26,71,22,17,24,47,10,15,34,61,55,46,72,54,77,50, 1,29,27,76,45,52,69,28,58,48, 4,

 16,13, 0,55,40,42,15, 1,23,32,47,63,68,73,52,74,10,78,21, 8,43,66,39,11,29,37,45,53,27,36,41,49,54,12,69,76, 2,64,19,60,
3,44,34,79,22, 6,20,58,14,56,71, 4,72,70,25,48,57,67,46,65,31, 5,75,33,38,18,30,35, 9,59,62,17, 7,28,61,50,77,51,24,26,

 39,18,56,32,11,54,73,72,21,24,41,14,76, 7, 9,70,71,12,58,38,57,50,67,51,28,26,79,77,33,53,35,63, 8,37,68,64,75,20,62,16,55, 2,10,
4,42,69,22,13,43,48,52,46, 0,23,60, 6,15,40,17,36,29, 3,31,19,25,27,44,49,59, 5,65,66,45,30, 1,47,34,74,61,78,

 7,23,74,78,56,53, 0,54,20, 9,50,73, 6,35,45,33,42,52,18, 1,65,72,55,79,77,58,17,34,22,30,36,70,59,26,57,21,71,44,43,28,75,10,13,
8,63,64, 4, 5,27,39,31,62,25,60,48, 3,12,11,14,66,16,37,40,38, 2,46,67,24,51,49,15,69,68,76,41,47,19,61,32,29,

 44,42,17,12,66,11, 0,69,49,67,53,65,61, 9,72,10,18,68,25,58,22,75,51,16,64,19,79,55,27,15,77,23,54,47, 7,50,60,41,57,73,34,56,
2,21,62, 6,26, 5,13,40, 1, 4,29,38,33,31,78,39,46,37,24,63,20,74,59,36,45, 3,35,70,30,43,71,32,14, 8,28,48,76,52,

 48,77,61,65, 8,23,55,37,21,28,36,18,26,24, 1,43,57, 9, 4,53,78,67,79,63,50,72,29,58,59,20,60,46, 0,44,70,30,15,
5,49,73,54,40,71,64,10,69, 3,56,17,41,76,42,34,32,19,27,47,62, 7,25,51,68,31,74,13,14,38,35,75, 2,22,45, 6,39,11,16,33,66,12,52,

 38,77,71,48,20,52,25,36,27,79,22,16, 2,18,32,46,39,59,73, 1,75,78,57,44,42, 4,10, 9,58,60,61,17,15,50,51,31,35,54,63,62,
72,65,19,53,14,56,34,26, 6,67,24,70,66,43,29,23,76,49,37, 7,74,28,12,13, 8,40,47,30,11, 5,69,45, 3,68, 0,64,21,41,33,55,

 73,57,21,48,53,12,36,17,58,78,75, 7,50,64, 8, 0,29,77,22,55,54,61,38,59,70,24,68,13, 6,11,35,41,44,45,52,76,23,60,39,
9,67,18,43,66, 2,10,72,28,47,15,62,42,56,51,33,65,74, 5,69,40,25,20, 1,34,16,27, 3,37,19,14,26,32,79, 4,30,46,49,31,71,63,

 58,29,10,41,51,59, 0,13, 5,63, 4,37, 8, 3,61,54,79,47,67,23,48,77,52,71, 9, 6,11,68,25,60,15,62,65,32,21,70,73,55,46,22,56,45,
40,38,64,33,75,18,57,69,53,76,16,42,35,19, 7,34,74,78,44,72,14, 2,17,24,12,27,26,50,66,36,20,43,49,31, 1,30,39,28,

 73,36,69,25,66,45,11,29,27,42,23,10,22, 5, 3, 6,38,50,75, 7,55,43,79,16,47,63,48,68,72,58, 9,67,60,40,37,35,14,15, 4,46,52,65,
0,53,18,32,19,64,17,44,77, 8,57,74,21,70,20,28,62,54,39,12,61,13,26,30,49,41,59, 1,78,76,34,71,24,33,56,31, 2,51,

 22,52,71,57,31, 1,36,50,28,63,30,21, 3,13,16,10,58, 5,35,23,29,60,20,73,24,79,75, 8,51,66,26,62,43,45,78,27,49,25,41,
0,11,38,67,14, 2,61,55,46,53,64,42,47,59, 6,65,40,39, 9, 4,54,70,69,68,19,72,17,34,15, 7,18,37,74,76,32,12,44,33,56,77,48,

 29,44,76, 9,30,25,60,35,45, 5,22,15,40,66,34,59,18,13,58, 3,33,65,14,36,75,72,39,20,69,55,38,79,26,17,50,48,54,78,
52,31,43,27,32,68, 2,67,42, 1,71,46, 4,41,53,37,74,12, 6,57,28,16,56,23,64,19, 7,10,47,21,63,70,62,11,24, 0,49,77, 8,61,51,73,

 25,38,27,56,65,49,42,28,10,76,37,34,74,57,59,67, 8,47,26,15,33,23,40,71,50, 2,46,21,19, 6, 4, 5, 9,43,18,63,45,73,58,53,14,64, 7,
0,48,20,54,68, 1,52,60,77,22,72,62,51,30,78,11,61,39,36,66,31,32,17,35,79, 3,24,69,13,55,16,44,75,70,41,29,12,

 45,71,66,11,54,56, 3,51,35, 0,53,19,21,55,10, 2,73,27,59, 1,31,60,20,62,68,22,38,74,61,50,58,23,24,49,48,28,12,13,
6,44,43,37,25,26,29,75,36,46,32,70,16,76,39,17,30,41,47,67,40,15,78,14, 9, 8,69,63,79,72,57,33, 4,42,34,52,65,77, 7,18, 5,64,

 16,55,63,42,48,27,38,28,57,72,62,19,79,33,15,77,51, 1,36, 7,78,52,29,25, 2,59,18,12,39,64,46, 3,24,43,60,34,61,40,54,14,44,74,
5,47,75, 9,49,23,68,58,65,26,56,22,37,20,66,21, 6,71, 0,17,73,50,41,10,35, 8, 4,70,30,67,69,76,53,32,13,45,31,11,

 49,60, 4,13,30,20,78, 3,37, 5,50,43,73,75, 6,40,23,29,11,53,27,31,34,74,64,41,36,17,44,48,77,21,16,18,58,79,57,10,
7,22,54,52,35,25,26,33,28,71,12,69,63,65,24,59,47,76,15,56,72, 8,46,39,42,45,55,38,66,14,67,62, 2,51,68, 1,70,32,19, 0, 9,61,

 19, 3,75,59,10, 8,14,11,12,39,67,41,28,74,76,73, 7,33,35,55,65,15,77,49,24,37,13,44,30,45,47, 4,70,36,50,69, 5,62,34,22, 0,61,
1,71,42,54,20,60,40,53,57,26,72,46,31,63,52,18,17,29,21, 9,58,66,51, 6,38,23,16,64,32,27,79, 2,68,48,78,56,43,25,

 27,71,73,66,12,47,44,63,33,11,61,72,46,69,31,48, 3,16,65,24,40,49,77, 1,58,70,14,52,57,21, 8,64,13,59,10,55,23,
0,17,53,41,54,68,78,67,38,39, 9,51,76,45, 7,62,60, 4,22,15,37,29,25,34,26,28,79, 5,20,74,18,56,32,42,43, 6,19,75,50,30,35,36, 2,

 27,20,10,54, 8,57,40, 0,22,12,47,36,75, 7,35,45,19,34,72,58,74,23,16,33,64,14,78,39,59,24,11,26, 6,28,32,43,73,38,67,25,70,71,
42,66, 3,46, 9,60,15, 2,51,21,79,53,30,65,41,68,13,56,76,77, 4, 5,37,44,49,52,63,17,29,31,50,61,69,62,55,48, 1,18,

 56,59,62,67,26,44,10,18,57,55,70,63,78,73, 0,40,34,29,30,42,11,68,72,64,12,35,50, 9,39,17,27,61,24, 2,31,47,41,53, 5,33,49,54,
1,45,15,25,77, 8,20,75,60,16,32,36,28,52,38,43,74,71,37,21,13,66,79,65, 7,19,48,23,22, 3,46,58,76,14,69,51, 4, 6,

 8,56,60,48,53, 2,40,66,29,10,61,59,11,67,35,51,14,36,63,76,54,44,69, 0, 3,15,32,79,73,58,72,23,12,71,57,50,19,52, 7,75,77,45,70,33,
1,55,68,22,42,49,38, 4,47,24,30,17,37,27,43,39,78,34,65,28,13,64, 9,25, 6,20,46,74,62,31, 5,41,16,21,26,18,

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 92 of 96

 40,73,77,48,59,37, 7,56,60,58,79,13, 6,21,30,23,47, 9,42,36,74,72,66, 3,38,25,45, 0,39,67,34,31,61,29,33,75,27, 1,68,15,41,
5,50,78,69,63,76,71,51,44,52,12,54,19,32, 8,11,64, 4,28,65,26,49, 2,55,46,43,62,35,17,70,22,20,57,14,24,10,16,18,53,

 34,16,44,30,25,78,29, 0,71,54,49,47,14,26, 2,20,22,61,53,36,59,27,38,42,43,52,74,39,24, 4,70,63,45,46,64,56, 1,66,35,
5,68,51,65,72,28,19, 7,48,18,13,33,21,60,50,40,76,37,55,32,79,77,69, 3,23,75,58, 6,41,62,10,67,15, 8,11,73,12,57, 9,17,31,

 35,34,68,54,11,13,41,33,52,16,63,72,60,46,48,69,28,40,12,73, 2, 0,29,53,37, 9, 5, 4,14,78,39,50,47,70,45,64, 7,25,79,18,21,
1,36,67,55,42,20, 6,76,26,59,51,19, 8,24,65,43,44,49,57,56,17,38,61,27,77,32,66,30,74,23,10,15,75,31,58,62,71,22, 3,

 35,16,41,21,28,79, 3,32,27, 2,51,48,31,44,18,39,13,74, 6,59,76,58, 8, 9,14,68,63,62,24, 0,15,22,49,23,47,65,33,78,70,56,66,
1,42,10,17,38,40,67,64,69,12,19,71,36,11,52,50,72,77, 7,53, 4,26,46,43,37,34,73,20,45,57,54,55,30, 5,25,60,75,61,29,

 1,30,52,57,60,34,67,10,72, 5,19,27,21,44, 4,74,61,47,64,39,40,28,45,26, 6,42,53, 8, 3,55,37,36,73,24,15, 0,56,13,77,14,16,25,
62,51,70,79,22,18,43,12,17, 9,29,65,59,68,63,31,48,32,46,33,58,35,38,41,11,66, 7,69,50,23,75,71, 2,54,49,76,78,20,

 18,34, 1,31,14,40,79,74,78,63,70,19,17,12,62,69, 9,48,24,77,33,76,20,21,55,64,66, 8,51,26,25, 2,73,60,49,75,43,29,54,
28,53,23,38,45,50,52,35, 5, 4,22,57,61,68,27,11, 3,32,72,56, 7,41,39,30,36,42,65,58,59,37,47, 6,15, 0,13,16,46,44,10,67,71,

 68,69,58,72,26,42,32,38,31,70,67,64,55,13,29,59,33,78,14,66,11,28,48,44,36,75,35,76, 5,54,77, 8,30, 0,37,62,73,21,63,25,34,12,
6,23,60,27,53,40,52,56,46, 7, 1,39, 3,41,24,10,20,19,18,57,71,15,51,16,47,43,17,74, 2,65, 9,45,61,22,79,50, 4,49,

B.4 Zpool status for the 80 drive JBOD
The following is the complete ‘zpool status’ listing for the 80 drive dRAID created in Section A.1.1. The array has 3 distributed
spare drives and 7 (8+3) parity groups.

zpool status
pool: MS09
 state: ONLINE
 scan: none requested
config:
NAME STATE READ WRITE CKSUM
 MS09 ONLINE 0 0 0
 draid3-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0
 sdg ONLINE 0 0 0
 sdh ONLINE 0 0 0
 sdi ONLINE 0 0 0
 sdk ONLINE 0 0 0
 sdl ONLINE 0 0 0
 sdm ONLINE 0 0 0
 sdo ONLINE 0 0 0
 sdp ONLINE 0 0 0
 sdq ONLINE 0 0 0
 sds ONLINE 0 0 0
 sdt ONLINE 0 0 0
 sdu ONLINE 0 0 0
 sdw ONLINE 0 0 0
 sdx ONLINE 0 0 0
 sdy ONLINE 0 0 0
 sdz ONLINE 0 0 0
 sdab ONLINE 0 0 0
 sdac ONLINE 0 0 0
 sdad ONLINE 0 0 0
 sdae ONLINE 0 0 0
 sdc ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdj ONLINE 0 0 0
 sdn ONLINE 0 0 0
 sdr ONLINE 0 0 0
 sdv ONLINE 0 0 0
 sdaa ONLINE 0 0 0
 sdaf ONLINE 0 0 0
 sdag ONLINE 0 0 0
 sdah ONLINE 0 0 0
 sdai ONLINE 0 0 0
 sdaj ONLINE 0 0 0
 sdak ONLINE 0 0 0
 sdal ONLINE 0 0 0
 sdam ONLINE 0 0 0
 sdan ONLINE 0 0 0
 sdao ONLINE 0 0 0
 sdap ONLINE 0 0 0
 sdaq ONLINE 0 0 0
 sdar ONLINE 0 0 0
 sdas ONLINE 0 0 0
 sdat ONLINE 0 0 0
 sdau ONLINE 0 0 0
 sdav ONLINE 0 0 0

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 94 of 96

 sdaw ONLINE 0 0 0
 sdax ONLINE 0 0 0
 sday ONLINE 0 0 0
 sdaz ONLINE 0 0 0
 sdba ONLINE 0 0 0
 sdbb ONLINE 0 0 0
 sdbc ONLINE 0 0 0
 sdbd ONLINE 0 0 0
 sdbe ONLINE 0 0 0
 sdbf ONLINE 0 0 0
 sdbg ONLINE 0 0 0
 sdbh ONLINE 0 0 0
 sdbi ONLINE 0 0 0
 sdbj ONLINE 0 0 0
 sdbk ONLINE 0 0 0
 sdbl ONLINE 0 0 0
 sdbm ONLINE 0 0 0
 sdbn ONLINE 0 0 0
 sdbo ONLINE 0 0 0
 sdbp ONLINE 0 0 0
 sdbq ONLINE 0 0 0
 sdbr ONLINE 0 0 0
 sdo ONLINE 0 0 0
 sdp ONLINE 0 0 0
 sdq ONLINE 0 0 0
 sds ONLINE 0 0 0
 sdt ONLINE 0 0 0
 sdu ONLINE 0 0 0
 sdw ONLINE 0 0 0
 sdx ONLINE 0 0 0
 sdy ONLINE 0 0 0
 sdz ONLINE 0 0 0
 sdab ONLINE 0 0 0
 sdac ONLINE 0 0 0
 sdad ONLINE 0 0 0
 sdae ONLINE 0 0 0
 sdc ONLINE 0 0 0
 sdf ONLINE 0 0 0
 sdj ONLINE 0 0 0
 sdn ONLINE 0 0 0
 sdr ONLINE 0 0 0
 sdv ONLINE 0 0 0
 sdaa ONLINE 0 0 0
 sdaf ONLINE 0 0 0
 sdag ONLINE 0 0 0
 sdah ONLINE 0 0 0
 sdai ONLINE 0 0 0
 sdaj ONLINE 0 0 0
 sdak ONLINE 0 0 0
 sdal ONLINE 0 0 0
 sdam ONLINE 0 0 0
 sdan ONLINE 0 0 0
 sdao ONLINE 0 0 0

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 95 of 96

 sdap ONLINE 0 0 0
 sdaq ONLINE 0 0 0
 sdar ONLINE 0 0 0
 sdas ONLINE 0 0 0
 sdat ONLINE 0 0 0
 sdau ONLINE 0 0 0
 sdav ONLINE 0 0 0
 sdaw ONLINE 0 0 0
 sdax ONLINE 0 0 0
 sday ONLINE 0 0 0
 sdaz ONLINE 0 0 0
 sdba ONLINE 0 0 0
 sdbb ONLINE 0 0 0
 sdbc ONLINE 0 0 0
 sdbd ONLINE 0 0 0
 sdbe ONLINE 0 0 0
 sdbf ONLINE 0 0 0
 sdbg ONLINE 0 0 0
 sdbh ONLINE 0 0 0
 sdbi ONLINE 0 0 0
 sdbj ONLINE 0 0 0
 sdbk ONLINE 0 0 0
 sdbl ONLINE 0 0 0
 sdbm ONLINE 0 0 0
 sdbn ONLINE 0 0 0
 sdbo ONLINE 0 0 0
 sdbp ONLINE 0 0 0
 sdbq ONLINE 0 0 0
 sdbr ONLINE 0 0 0
 sdbs ONLINE 0 0 0
 sdbt ONLINE 0 0 0
 sdbu ONLINE 0 0 0
 sdbv ONLINE 0 0 0
 sdbw ONLINE 0 0 0
 sdbx ONLINE 0 0 0
 sdby ONLINE 0 0 0
 sdbz ONLINE 0 0 0
 sdca ONLINE 0 0 0
 sdcb ONLINE 0 0 0
 sdcd ONLINE 0 0 0

 spares
 $draid3-0-s0 AVAIL
 $draid3-0-s1 AVAIL
 $draid3-0-s2 AVAIL

errors: No known data errors

 dRAID: Declustered RAID for ZFS
Installation and Configuration Guide

September, 2017

 Intel Federal, LLC Proprietary Page 96 of 96

Appendix C. References

[1] I. Huang, "Declustered RAIDZ Scope Statement," Argonne Contract number: B609815,
MS6, 2015.

[2] I. Huang, "Declustered RAIDZ Solution Architecture," Argonne Contract number: B609815,
MS6, 2015.

[3] G. Alvarez, W. Burkhard, L. Stockmeyer and F. Cristian, "Declustered Disk Array
Architectures with Optimal and Near-optimal Parallelism," in Proceedings of the 25th
International Symposium on Computer Architecture, ISCA '98, 1998.

[4] M. Holland and G. Gibson, "Parity Declustering for Continuous Operation in Redundant
Disk Arrays," in Proceedings of the fifth international conference on Architectural support
for programming languages and operating systems, 1992.

[5] E. Riedel, "http://www.cs.cmu.edu/~riedel/ftp/Declustering/BD_database.tar.Z," [Online].
[6] T. Scharz, J. Steinberg and W. Burkhard, "Permutation Development Data Layout

(PDDL)," in Proc 5th IEEE Symp. on High Performance Computer Architecture, HPCA’99,
1999.

[7] A. Brinkmann, K. Salzwedel and C. Scheideler, "Efficient, distributed data placement
strategies for storage area networks (extended abstract)," in Proceedings of the Twelfth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’00, 2000.

[8] J. R. Santos, R. R. Muntz and B. Ribeiro-Neto, "Comparing random data allocation and
data striping in multimedia servers," SIGMETRICS Perform. Eval. Rev., vol. 28, pp. 44-55,
2000.

[9] A. Goel, C. Shahabi, S.-Y. D. Yao and R. Zimmermann, "SCADDAR: An efficient
randomized technique to reorganize continuous media blocks," in Proceedings of the 18th
International Conference on Data Engineering, ICDE ’02, 2002.

[10] B. Seo and R. Zimmermann, "Efficient disk replacement and data migration algorithms for
large disk subsystems," Trans. Storage, vol. 1, pp. 316-345, 2005.

[11] D. Brady, "Lustre Sreaming Improvements High Level Design," Argonne Contract number:
B609815, MS3, 2015.

[12] "Knuth Shuffle," [Online]. Available:
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle. [Accessed 2015].

	1 Introduction
	1.1 Terms used in this Document
	1.2 Additional Documentation
	1.3 Software Requirements
	1.4 Hardware Requirements

	2 Configuring dRAID for ZFS
	2.1 Introduction
	2.1.1 raidz vs dRAID
	2.1.2 Recommended Reading

	2.2 Using dRAID
	2.2.1 Create a dRAID VDEV
	2.2.2 Sequential Rebuild
	2.2.3 dRAID-aware Spare Space Rebalancing
	2.2.4 Troubleshooting

	2.3 Administration of dRAID for ZFS
	2.3.1 Introduction
	2.3.2 Command Line Interface

	2.4 Tuning dRAID for ZFS

	3 ZED Fault Handling
	3.1 Introduction
	3.2 Spare Device Matching
	3.3 Multi-path Support
	3.4 ZED Watchdog Timer
	3.5 Multi-Fault Support

	4 Metadata Isolation
	4.1 Introduction
	4.2 Dedicated VDEVs
	4.3 Segregated VDEVs
	4.3.1 Segregation Percentage
	4.3.2 Ditto Block Policy

	4.4 VDEV Changes
	4.4.1 Feature Flag Encapsulation
	4.4.2 VDEV Allocation Bias
	4.4.3 Metaslab Allocation Bias
	4.4.4 VDEV Allocation Stats

	4.5 Notes on Metadata Isolation

	5 Validation
	5.1 Building and installing the ZFS Test Suite
	5.2 Running the ZFS Test Suite
	5.3 Test Results
	5.4 ZTest/zloop Verification Tests

	Appendix A. Usage Examples
	A.1 Usage Examples of dRAID for ZFS
	A.1.1 Arbitrary Pool Configuration
	A.1.2 Dynamic Rebuild Throttling
	A.1.3 Rebuild Stop and Resume
	A.1.4 Rebalance

	A.2 Usage Examples of Metadata Isolation with Lustre* and dRAID
	A.2.1 Hybrid Metadata/Smallblock Isolation with dRAID VDEVs
	A.2.2 Observing Metaslab Regions
	A.2.3 Observing Free Space Fragmentation
	A.2.4 Observing Allocations by Category

	A.3 Usage Examples of End-to-End 16MB File Block I/Os
	A.3.1 Configuring the file system for 16MB I/Os
	A.3.2 Lustre OSS
	A.3.3 Prepping Lustre Counters
	A.3.4 BRW Stats

	A.4 End to End Streaming
	A.4.1 Lustre Client RPC stats
	A.4.2 Lustre Server BRW stats
	A.4.3 ZFS I/O Sizes
	A.4.4 Linux Disk stats and Bandwidths
	A.4.5 Linux disk stats for a random workload

	A.5 Fragmentation Improvements
	A.5.1 File System Fragmention
	A.5.2 Performance Improvements with Segregated Metadata

	A.6 Examples of ZED Fault Handling using dRAID for ZFS
	A.6.1 Multi-Fault Handling

	Appendix B. dRAID Configuration Examples
	B.1 ‘zdb –m’ for a dRAID pool without segregation
	B.2 ‘zdb –m’ for a dRAID pool with segregation enabled
	B.3 draidcfg output for the 80 drive demonstration (80.nvl)
	B.4 Zpool status for the 80 drive JBOD

	References

